Electric Power ›› 2020, Vol. 53 ›› Issue (8): 158-163.DOI: 10.11930/j.issn.1004-9649.201910099
Previous Articles Next Articles
LIU Wenhui1, XU Zunyi1, ZHANG Xuran1, ZHANG Haiyan2
Received:
2019-10-24
Revised:
2020-03-07
Published:
2020-08-05
Supported by:
LIU Wenhui, XU Zunyi, ZHANG Xuran, ZHANG Haiyan. Feature Extraction Method for Wet Flue Gas Desulfurization Under Operating Conditions Based on Mutual Information and PCA Theory[J]. Electric Power, 2020, 53(8): 158-163.
[1] 国家环境保护部. 火电厂大气污染物排放标准: GB13223—2011 [S]. 北京: 中国标准出版社, 2011. [2] 崔仕文, 铁治欣, 丁成富, 等. 基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型[J]. 热力发电, 2017, 46(4): 81-87 CUI Shiwen, TIE Zhixin, DING Chengfu, et al. Prediction model for flue gas wet desulfurization efficiency based on partial least squares support vector machine[J]. Thermal Power Generation, 2017, 46(4): 81-87 [3] 李兴华, 何育东. 燃煤火电机组SO2超低排放改造方案研究[J]. 中国电力, 2015, 48(10): 148-151 LI Xinghua, HE Yudong. Study on modification of ultra-low SO2 emission in coal-fired power plants[J]. Electric Power, 2015, 48(10): 148-151 [4] 郭彦鹏, 潘丹萍, 杨林军. 湿法烟气脱硫中石膏雨的形成及其控制措施[J]. 中国电力, 2014, 47(3): 152-154, 159 GUO Yanpeng, PAN Danping, YANG Linjun. Formation and control of gypsum rain in wet flue gas desulfurization[J]. Electric Power, 2014, 47(3): 152-154, 159 [5] HUANG C J, TAN G B, CHEN Y Q. Application of wet flue gas desulfurization control system for 2×200 MW units [C]//International Conference on Artificial Intelligence, IEEE. Dengleng, 2011: 318-324. [6] 刘黎伟. 石灰石-石膏湿法脱硫系统运行优化研究[J]. 电力科技与环保, 2019, 35(1): 35-36 LIU Liwei. Optimal operation research of limestone-gypsum wet flue gas desulfurization[J]. Electric Power Technology and Environmental Protection, 2019, 35(1): 35-36 [7] 段玖祥, 李小龙, 蔡培, 等. 超低排放燃煤电厂WFGD系统优化运行探讨[J]. 环境工程, 2017, 35(12): 73-76 DUAN Jiuxiang, LI Xiaolong, CAI Pei, et al. Optimization operation of WFGD systems in ultra-low emission coal-fired power plants[J]. Environmental Engineering, 2017, 35(12): 73-76 [8] 杨用龙, 苏秋凤, 张杨, 等. 双塔双循环脱硫系统优化与经济性运行研究[J]. 中国电力, 2018, 51(4): 136-142 YANG Yonglong, SU Qiufeng, ZHANG Yang, et al. System optimization and economical operation of the series absorption tower[J]. Electric Power, 2018, 51(4): 136-142 [9] 刘敏, 周然, 郑川江, 等. 火电厂脱硫系统运行优化控制模型研究[J]. 热能动力工程, 2017, 32(6): 95-99 LIU Min, ZHOU Ran, ZHENG Chuanjiang, et al. Study on operation optimization and control model for desulfurization system of thermal power plants[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 95-99 [10] 许丹, 沈凯, 张亚平, 等. 基于模糊理论的湿法脱硫故障诊断和优化模型研究[J]. 环境工程, 2018, 36(2): 92-97 XU Dan, SHEN Kai, ZHANG Yaping, et al. Study of fault diagnosis and operation optimization models of WFGD based on fuzzy theory[J]. Environmental Engineering, 2018, 36(2): 92-97 [11] YANG Z K, LIU C Y, SONG X L, et al. Application of RBF neural network PID in wet flue gas desulfurization of thermal power plant [C]// International Conference on Machine Learning & Cybernetics, IEEE. Jeju, 2017: 301–306. [12] 朱竹军. 基于专家控制的炉外湿法脱硫自动控制研究及应用[J]. 自动化与仪表, 2019, 34(1): 24-27, 32 ZHU Zhujun. Research and application of wet desulfurization automatic control based on expert control[J]. Automation & Instrumentation, 2019, 34(1): 24-27, 32 [13] JOLLIFFE I T. Principal component analysis [M]. New York: Springer-Verlag, 1986: 111–137. [14] 张东平, 孙克勤, 潘效军, 等. 湿法烟气脱硫吸收塔仿真模型开发及应用[J]. 环境科学与技术, 2011, 34(3): 189-192 ZHANG Dongping, SUN Keqin, PAN Xiaojun, et al. A simulation model of wet scrubbers for flue gas desulfurization[J]. Environmental Science & Technology, 2011, 34(3): 189-192 [15] 田丽玲, 张丽萍. 一种数据驱动的湿法烟气脱硫系统的故障诊断方法[J]. 福州大学学报(自然科学版), 2012, 40(1): 82-86 TIAN Liling, ZHANG Liping. A data-driven fault diagnosis of wet flue gas desulfurization system[J]. Journal of Fuzhou University (Natural Science Edition), 2012, 40(1): 82-86 [16] BATTITI R. Using mutual information for selecting features in supervised neural net learning[J]. Neural Networks IEEE Transactions on, 1994, 5(4): 537-550. [17] AMJADY N, DARAEEPOUR A. Day-ahead price forecasting of electricity markets by combination of mutual information technique and neural network [C]// Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, IEEE. Pittsburgh, PA, 2008: 1–7. [18] KATO Y, SAITO H, EJIMA T, et al. An application of SVM: alphanumeric character recognition [C]//International 1989 Joint Conference on Neural Networks, IEEE. Washington DC, 1989: 576. [19] 纪昌明, 周婷, 向腾飞, 等. 基于网格搜索和交叉验证的支持向量机在梯级水电系统隐随机调度中的应用[J]. 电力自动化设备, 2014, 34(3): 125-131 JI Changming, ZHOU Ting, XIANG Tengfei, et al. Application of support vector machine based on grid search and cross validation in implicit stochastic dispatch of cascaded hydropower stations[J]. Electric Power Automation Equipment, 2014, 34(3): 125-131 [20] YANG M Y, LI W Q, ZHANG H Y, et al. Parameters optimization improvement of SVM on load forecasting [C]//International Conference on Intelligent Human—Machine Systems and Cybernetics, IEEE. Hangzhou, 2016: 257–260. [21] SUN Y Y, WANG Y M, GUO L L, et al. The comparison of optimizing SVM by GA and grid search [C]//International Conference on Electronic Measurement & Instruments, IEEE. Yangzhou, 2017: 354–360. |
[1] | Lei TAO, Pingping LUO, Jikeng LIN. Two-stage Detection Method for DC Microgrid False Data Injection Attack Based on Deep Learning [J]. Electric Power, 2024, 57(9): 11-19. |
[2] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[3] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[4] | Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder [J]. Electric Power, 2024, 57(12): 17-29. |
[5] | Yunpeng HU, Chenggang DU, Jun QI, Rihong ZHENG, Minfu A, Hao ZHANG, Yongliang LIANG. D-S Evidence Theory Based Comprehensive Identification Model for Cause of Grounding Fault in Distribution Network [J]. Electric Power, 2024, 57(10): 133-142. |
[6] | XU Yilun, ZHANG Binqiao, HUANG Jing, XIE Xiao, WANG Ruoxin, SHEN Danqing, HE Lina, YANG Kaifan. Forecast of Photovoltaic Power Based on IWPA-LSSVM Considering Weather Types and Similar Days [J]. Electric Power, 2023, 56(2): 143-149. |
[7] | Wei HAN, Wenyan DUAN, Xingwei DU, Feng YAO, Weidong MA, Lei LIU. Fault Diagnosis Method for Operational Security Control System Based on Digital Twins [J]. Electric Power, 2023, 56(11): 121-127. |
[8] | Long JIANG, Liang CHENG, Jinjing LI, Qing LI. Quantitative Evaluation of Wet Desulfurization Slurry Quality and Spray Layer Operation in Coal-fired Power Plants [J]. Electric Power, 2023, 56(11): 217-225, 235. |
[9] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[10] | Yabing YAN, Xu CHU, Haolong XIAO, Wenwu LIANG, Hui LI, Zhenxing XIA. Automatic Generation Technology of Safety Measures for Digital Substation Based on Improved Support Vector Machine [J]. Electric Power, 2023, 56(10): 194-201. |
[11] | HU Jing, DENG Ying, JIANG Xingliang, ZENG Yunrui. Feature Extraction and Identification Method of Ice-covered Saddle Mircotopography for Transmission Lines [J]. Electric Power, 2022, 55(8): 135-142. |
[12] | CHEN Zhengxiong, PAZILAI Mahemuti, SHEN Wei. Aging Prediction of IGBT Based on Improved Support Vector Regression [J]. Electric Power, 2022, 55(7): 1-10. |
[13] | AI Xin, HU Huanyu, REN Dapeng, PENG Dong, LIU Huichuan, XUE Yawei, ZHANG Tianqi. Improved Fuzzy Evaluation Model and Assessment of Power Grid Development Diagnosis [J]. Electric Power, 2022, 55(5): 66-75,165. |
[14] | ZHAO Hongshan, LI Jingxuan. Energy Efficiency Evaluation Model of Park Customers Based on PSR and Improved Grey TOPSIS [J]. Electric Power, 2022, 55(3): 203-212. |
[15] | LIU Jinsen, LUO Ning, WANG Jie, XU Chang, Cao Yi, Liu Zhiwen. Massive Scenario Reduction Based Distribution-Level Power System Planning Considering the Coordination of Source, Network, Load and Storage [J]. Electric Power, 2022, 55(12): 78-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||