Electric Power ›› 2018, Vol. 51 ›› Issue (11): 38-44.DOI: 10.11930/j.issn.1004-9649.201801046
Previous Articles Next Articles
YU Qun1, ZHANG Zheng1, QU Yuqing1, HE Qing2
Received:2018-01-08
Revised:2018-04-20
Online:2018-11-16
Published:2018-11-05
Supported by:CLC Number:
YU Qun, ZHANG Zheng, QU Yuqing, HE Qing. Power Loss Prediction of Large Blackouts in Power Grid Based on ARMA-GABP Combined Model[J]. Electric Power, 2018, 51(11): 38-44.
| [1] 郭剑波, 于群, 贺庆.电力系统复杂性理论初探[M].北京:科学出版社, 2012:1–2. [2] 曹一家, 郭剑波, 梅生伟, 等.大电网安全性评估的系统复杂性理论[M]. 北京:清华大学出版社, 2010. [3] 梅生伟, 薛安成, 张雪敏. 电力系统自组织临界特性与大电网安全[M]. 北京:清华大学出版社, 2009. [4] 陈竟成, 黄瀚. 印度大停电事故分析与启示[J]. 中国电力, 2012, 45(10):12-16. CHEN Jingcheng, HUANG Han. Analysis and revelation from blackout events in India[J]. Electric Power, 2012, 45(10):12-16. [5] 邹江峰, 章显亮. 巴西"2009·11·10"和"2011·2·4"大停电事故及启示[J]. 中国电力, 2011, 44(11):19-22. ZOU Jiangfeng, ZHANG Xianliang. Summary and revelation of "2009·11·10" and "2011·2·4" blackouts in Brazil power system[J]. Electric Power, 2011, 44(11):19-22. [6] HINES P, APT J, TALUKDAR S. Trends in the history of large blackouts in the United States[C]//Proceedings of 2008 IEEE Power and Energy Society General Meeting:Conversion and Delivery of Electrical Energy in the 21st Century. July 20-24, 2008, Pittsburgh, PA, USA, 2008:1–8. [7] 曹一家, 丁理杰, 江全元, 等. 基于协同学原理的电力系统大停电预测模型[J]. 中国电机工程学报, 2005, 25(18):13-19. CAO Yijia, DING Lijie, JIANG Quanyuan, et al. A predictive model of power system blackout based on synergetic theory[J]. Proceedings of the CSEE, 2005, 25(18):13-19. [8] 于群, 屈玉清, 石良. 基于相对值法和Hurst指数的电网停电事故自相关性分析[J]. 电力系统自动化, 2018, 42(1):55-60. YU Qun, QU Yuqing, SHI Liang. Self-correlation analysis of power grid blackouts based on relative value method and hurst exponent[J]. Automation of Electric Power Systems, 2018, 42(1):55-60. [9] 晁岱峰, 杨军选, 苏盛, 等. 濮阳配电网故障的自组织临界性及其诱因[J]. 电网技术, 2011, 35(1):72-75. CHAO Daifeng, YANG Junxuan, SU Sheng, et al. Self-organized criticality and its cause of faults in Puyang distribution system[J]. Power System Technology, 2011, 35(1):72-75. [10] 巫伟南, 杨军, 胡文平, 等. 考虑输电线路故障特性的电网综合风险评估体系[J]. 电力自动化设备, 2014, 34(6):129-134. WU Weinan, YANG Jun, HU Wenping, et al. Power grid risk assessment system considering characteristics of transmission line failure[J]. Electric Power Automation Equipment, 2014, 34(6):129-134. [11] 于群, 郭剑波. 电网停电事故的自组织临界性及其极值分析[J]. 电力系统自动化, 2007, 31(3):1-3. YU Qun, GUO Jianbo. Self-organized criticality and extreme statistics analysis of electric power system blackouts[J]. Automation of Electric Power Systems, 2007, 31(3):1-3. [12] 曹娜, 曹爽爽, 于群, 等. 基于最大熵的电网停电事故损失负荷预测[J]. 山东科技大学学报(自然科学版), 2017, 36(5):65-71. CAO Na, CAO Shuangshuang, YU Qun, et al. Lost load forecasting of power grid blackouts based on maximum entropy[J]. Journal of Shandong University of Science and Technology(Natural Science), 2017, 36(5):65-71. [13] 万志宏. 基于时间序列的电力系统短期负荷预测研究[D]. 广州:华南理工大学, 2012. [14] 邵璠, 孙育河, 梁岚珍. 基于ARMA模型的风电场风速短期预测[J]. 电网与清洁能源, 2008, 24(7):52-55. SHAO Fan, SUN Yuhe, LIANG Lanzhen. Wind speed short-term forecast for wind farms based on ARMA model[J]. Power System and Clean Energy, 2008, 24(7):52-55. [15] 杨碧源, 赵金笑, 魏宏鸽, 等. 基于BP神经网络的SCR蜂窝状催化剂脱硝性能预测[J]. 中国电力, 2016, 49(10):127-131. YANG Biyuan, ZHAO Jinxiao, WEI Hongge, et al. Performance forecasting for SCR honeycomb catalyst based on BP neural network[J]. Electric Power, 2016, 49(10):127-131. [16] 严旭, 李思源, 张征. 基于遗传算法的BP神经网络在城市用水量预测中的应用[J]. 计算机科学, 2016, 43(S2):547-550. YAN Xu, LI Siyuan, ZHANG Zheng. Application of BP neural network based on genetic algorithms in prediction model of city water consumption[J]. Computer Science, 2016, 43(S2):547-550. [17] 许童羽, 马艺铭, 曹英丽, 等. 基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测[J]. 电力系统保护与控制, 2016, 44(22):90-95. XU Tongyu, MA Yiming, CAO Yingli, et al. Short term forecasting of photovoltaic output power based on principal component analysis and genetic optimization of BP neural network[J]. Power System Protection and Control, 2016, 44(22):90-95. [18] 国家电力调度通信中心. 全国电网典型事故分析:1988-1998[M]. 北京:中国电力出版社, 1999. [19] 国家电力调度通信中心. 电网典型事故分析:1997-2007年[M]. 北京:中国电力出版社, 2008. [20] 国家电网公司安全监察部. 国家电网公司2008年安全生产事故报告[M]. 北京:中国电力出版社, 2009. [21] 国家电网公司安全监察部. 国家电网公司2011年安全生产事故报告[M]. 北京:中国电力出版社, 2012. [22] 中国水力发电工程学会. 中国水力发电年鉴[M]. 北京:中国电力出版社, 2013. [23] 国家能源局. 全国电力安全生产情况通报[EB/OL]. (2016–12–31)[2017–01–22]. http://www.nea.gov.cn/index.htm. [24] 于群, 石良, 曹娜, 等. 广义极值理论在大停电事故损失负荷预测中的应用[J]. 电力系统自动化, 2016, 40(8):71-77. YU Qun, SHI Liang, CAO Na, et al. Application of generalized extreme value distribution in prediction power loss of large-scale blackouts[J]. Automation of Electric Power Systems, 2016, 40(8):71-77. [25] 国家电网公司.国家电网公司电力生产事故调查规程[M]. 北京:中国电力出版社, 2005. [26] 杨锡运, 任杰, 肖运启. 基于粗糙集的光伏输出功率组合预测模型[J]. 中国电力, 2016, 49(12):133-138. YANG Xiyun, REN Jie, XIAO Yunqi. A combined photovoltaic output forecasting method based on rough set theory[J]. Electric Power, 2016, 49(12):133-138. [27] 马小敏, 高剑, 吴驰, 等. 基于灰色支持向量机的输电线路覆冰厚度预测模型[J]. 中国电力, 2016, 49(11):46-50. MA Xiaomin, GAO Jian, WU Chi, et al. Prediction model for icing thickness of power transmission line based on grey support vector machine[J]. Electric Power,2016, 49(11):46-50. [28] 钱志. 基于改进型SVR的电网短期负荷预测[J]. 中国电力, 2016, 49(8):54-58. QIAN Zhi. Short-term power load forecasting based on improved SVR[J]. Electric Power, 2016, 49(8):54-58. [29] 赵芝璞, 高超, 沈艳霞, 等. 基于关联模糊神经网络和改进型蜂群算法的负荷预测方法[J]. 中国电力, 2018, 51(2):54-60. ZHAO Zhipu, GAO Chao, SHEN Yanxia, et al. A method for load forecasting based on correlated fuzzy neural network and improved artificial bee colony algorithm[J]. Electric Power, 2018, 51(2):54-60. [30] 方博, 何朗. 关于ARMA-BP神经网络组合模型的财政收入预测[J]. 数学杂志, 2015, 35(3):709-713. FANG Bo, HE Lang. Fiscal revence prediction about the ARMA-BP neural network combination model[J]. Journal of Mathematics, 2015, 35(3):709-713. [31] 田亮, 罗宇, 王阳. 基于遗传算法优化BP神经网络的TIG焊缝尺寸预测模型[J]. 上海交通大学学报, 2013, 47(11):1690-1696. TIAN Liang, LUO Yu, WANG Yang. Prediction model of TIG welding seam size based on BP neural network optimized by genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2013, 47(11):1690-1696. [32] 梁毅, 刘世洪. 基于遗传算法优化的BP神经网络的组合预测模型方法研究[J]. 中国农业科学, 2012, 45(23):4924-4930. LIANG Yi, LIU Shihong. Research on the combined forecast model method based on BP neural network improved by genetic algorithm[J]. Scientia Agricultura Sinica, 2012, 45(23):4924-4930. |
| [1] | MAN Linkun, WU Keming, CHI Cheng, YOU Jinshi, ZHAO Zitong, ZHANG Yajian. Adaptive Load Frequency Control Strategy for Interconnected Power Systems Considering Stochastic Access/Exit Behaviors of Energy Storage Systems [J]. Electric Power, 2025, 58(9): 164-174. |
| [2] | RU Chuanhong, LU Ji, QIN Jian, ZHANG Junda, CHANG Junxiao, JIANG Beini. Stochastic Optimization Strategy for Load Management of Industrial Park Under Energy Constraints [J]. Electric Power, 2025, 58(8): 130-138. |
| [3] | WANG Xuejun, FANG Shuiping, CHI Guangyong. Transient Stability Assessment Method for Multi-machine Power Systems Considering Dense Channels [J]. Electric Power, 2025, 58(8): 139-146. |
| [4] | ZHANG Bohang, QI Jun, XIE Luyao, ZHANG Youbing, ZHANG Boyang. Distributed Model Predictive Frequency Control of Interconnected Power Systems Considering Demand Response [J]. Electric Power, 2025, 58(7): 105-114. |
| [5] | ZHAO Lin, GUO Shangmin, SHANG Wenying, DONG Jian, WANG Wei. Configuration Optimization of Renewable Energy Systems Based on FDOA [J]. Electric Power, 2025, 58(7): 168-176. |
| [6] | ZHOU Kai, TAO Zhengshun, PAN Tinglong, XU Dezhi. Balancing Control Strategy for Energy Storage Lithium Battery Pack Based on CCS-MPC [J]. Electric Power, 2025, 58(7): 177-186. |
| [7] | WEI Wei, YU He, YE Li, WANG Yingchun. Low Voltage Substation Photovoltaic Ultra Short Term Power Prediction Method Based on FCM-SENet-TCN [J]. Electric Power, 2025, 58(6): 172-179. |
| [8] | WANG Yanyang, LI Jianzhao, LIU Jingqing, TANG Cheng, WANG Jiantao, LU Jinling, REN Hui. Comprehensive Cost Analysis of Multiple Entities under the Coupling Mechanism of Electricity and Carbon [J]. Electric Power, 2025, 58(6): 180-189. |
| [9] | GUI Qianjin, XU Wenfa, LI Xiaoyang, LUO Lirong, YE Haifeng, WANG Zhengfeng. Ultra-Short-Term Photovoltaic Power Interval Forecasting Based on Time-Series Decomposition and Conformal Quantile Regression [J]. Electric Power, 2025, 58(5): 21-32. |
| [10] | HU Changsheng, BAI Zhijun, ZHANG Zhang, LI Jiankang, SHEN Ziyang. Research on Capacity and Distribution Planning of Electric Hydrogen Production Considering Static Voltage Stability Margin [J]. Electric Power, 2025, 58(5): 91-101. |
| [11] | YUAN Tiejiang, LI Rongsheng, KANG Jiandong, YAN Huaguang. Residual Life Prediction of Proton Exchange Membrane Fuel Cell Based on Improved ESN [J]. Electric Power, 2025, 58(5): 102-109. |
| [12] | WANG Xiaodong, LI Qing, FU Deyi, LIU Yingming, WANG Ruojin. Fatigue Load Prediction of Wind Turbine Drive Train Based on CNN-BiLSTM [J]. Electric Power, 2025, 58(4): 90-97. |
| [13] | Jian LI, Jun ZHANG, Xinyang HAN, Xiaoling JIN. Overall Framework and Function Design of Quantified Gaming Method for New Power System Forms [J]. Electric Power, 2025, 58(3): 1-7, 97. |
| [14] | Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy [J]. Electric Power, 2025, 58(3): 8-19. |
| [15] | Pei ZHANG, Majing YANG, Fang ZHANG, Hua XIE, Guangyi LIU, Wenyun LI, Xuegang LU, Zhenyi WANG, Suwei ZHAI. Review of the Application of Graph Database and Graph Computing in Power System Dispatch and Operation [J]. Electric Power, 2025, 58(3): 119-131. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
