中国电力 ›› 2025, Vol. 58 ›› Issue (9): 148-163.DOI: 10.11930/j.issn.1004-9649.202502018
傅国斌1(
), 杨凯璇1, 孙海斌1, 文棋璇2, 赵焕蓓1, 文云峰2(
)
收稿日期:2025-02-11
发布日期:2025-09-26
出版日期:2025-09-28
作者简介:基金资助:
FU Guobin1(
), YANG Kaixuan1, SUN Haibin1, WEN Qixuan2, ZHAO Huanbei1, WEN Yunfeng2(
)
Received:2025-02-11
Online:2025-09-26
Published:2025-09-28
Supported by:摘要:
随着电力电子接口资源渗透率的快速提升,电力系统惯量水平显著降低,传统同步机主导的电力系统频率动态特性发生深刻变革。系统梳理低惯量电力系统频率安全约束优化运行的关键问题、建模方法及求解策略,分析现有研究的局限性,并提出未来研究方向。在阐明低惯量电力系统优化运行面临的难点问题和挑战的基础上,从日前、日内、实时3个时间尺度总结低惯量电力系统优化运行模型的研究进展;进而,深入探讨非线性频率安全约束的多种类重构方法及源-荷不确定性处理方法;最后,给出多时间尺度协同优化、电力电子设备交互影响等前沿方向,以期为低惯量形态下中国新型电力系统的优化运行和频率安全提供参考。
傅国斌, 杨凯璇, 孙海斌, 文棋璇, 赵焕蓓, 文云峰. 低惯量电力系统频率安全约束优化运行研究综述与展望[J]. 中国电力, 2025, 58(9): 148-163.
FU Guobin, YANG Kaixuan, SUN Haibin, WEN Qixuan, ZHAO Huanbei, WEN Yunfeng. Frequency Security Constrained Optimal Operation of Low-Inertia Power Systems: Review and Prospects[J]. Electric Power, 2025, 58(9): 148-163.
| 项目 | 鲁棒优化 | 随机优化 | 机会约束 | 区间优化 | ||||
| 概率分布函数 | 不需要 | 需要 | 需要 | 不需要 | ||||
| 求解难度 | 低 | 高 | 高 | 低 | ||||
| 缺点 | 过于保守 | 区间要求 较为严格 | 场景不足 过多风险 | 区间要求 较为严格 | ||||
| 适用场景 | 短期调度和极端场景控制 | 中长期 优化 | 具有较大规模的优化问题 | 基于概率的优化问题 |
表 1 不同不确定建模方法比较
Table 1 Comparison of different uncertainty modeling approaches
| 项目 | 鲁棒优化 | 随机优化 | 机会约束 | 区间优化 | ||||
| 概率分布函数 | 不需要 | 需要 | 需要 | 不需要 | ||||
| 求解难度 | 低 | 高 | 高 | 低 | ||||
| 缺点 | 过于保守 | 区间要求 较为严格 | 场景不足 过多风险 | 区间要求 较为严格 | ||||
| 适用场景 | 短期调度和极端场景控制 | 中长期 优化 | 具有较大规模的优化问题 | 基于概率的优化问题 |
| 1 | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41 (9): 2- 11. |
| KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41 (9): 2- 11. | |
| 2 | 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40 (6): 1843- 1856. |
| WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40 (6): 1843- 1856. | |
| 3 | 范越, 李永莱, 舒印彪, 等. 新型电力系统平衡构建与安全稳定关键技术初探[J]. 中国电机工程学报, 2025, 45 (1): 14- 25. |
| FAN Yue, LI Yonglai, SHU Yinbiao, et al. Preliminary study on key technologies of balancing and stabilizing of renewable-energy-dominated power system[J]. Proceedings of the CSEE, 2025, 45 (1): 14- 25. | |
| 4 | 鲁宗相, 叶一达, 郭莉, 等. 电力电子化电力系统的调频挑战与多层级协调控制框架[J]. 中国电力, 2019, 52 (4): 8- 17, 110. |
| LU Zongxiang, YE Yida, GUO Li, et al. Frequency regulation challenge of power electronics dominated power systems and its new multi-level coordinated control framework[J]. Electric Power, 2019, 52 (4): 8- 17, 110. | |
| 5 | 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43 (5): 1672- 1694. |
| WANG Mengjun, GUO Jianbo, MA Shicong, et al. Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43 (5): 1672- 1694. | |
| 6 | 鲁宗相, 姜继恒, 乔颖, 等. 新型电力系统广义惯量分析与优化研究综述[J]. 中国电机工程学报, 2023, 43 (5): 1754- 1776. |
| LU Zongxiang, JIANG Jiheng, QIAO Ying, et al. A review on generalized inertia analysis and optimization of new power systems[J]. Proceedings of the CSEE, 2023, 43 (5): 1754- 1776. | |
| 7 | 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40 (9): 211- 222. |
| WEN Yunfeng, YANG Weifeng, LIN Xiaohuang. Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric Power Automation Equipment, 2020, 40 (9): 211- 222. | |
| 8 |
ZHANG W Q, WEN Y F, CHUNG C Y. Inertia security evaluation and application in low-inertia power systems[J]. IEEE Transactions on Power Systems, 2025, 40 (2): 1725- 1737.
DOI |
| 9 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量 电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008. |
| 10 | 胡小康, 王中权, 綦晓, 等. 考虑最低惯量需求的海上风电与海岛微网频率交互控制策略[J]. 南方电网技术, 2023, 17 (5): 80- 90. |
| HU Xiaokang, WANG Zhongquan, QI Xiao, et al. Interaction frequency regulation strategy between offshore wind farm and island microgrids considering minimum inertia requirement[J]. Southern Power System Technology, 2023, 17 (5): 80- 90. | |
| 11 | 苟竞, 刘方, 况理, 等. 计及频率稳定的多直流异步外送电网切机容量优化[J]. 中国电力, 2021, 54 (5): 101- 110. |
| GOU Jing, LIU Fang, KUANG Li, et al. Generation shedding capacity optimization of sending-end power grids with multi-DC asynchronous outfeeds considering frequency stability[J]. Electric Power, 2021, 54 (5): 101- 110. | |
| 12 | 徐式蕴, 王一鸣, 孙华东, 等. 国外新能源脱网事故对中国电网安全稳定运行的启示[J]. 电力系统自动化, 2024, 48 (13): 1- 8. |
| XU Shiyun, WANG Yiming, SUN Huadong, et al. Insights from renewable energy outage accidents abroad for secure and stable operation of power grids in China[J]. Automation of Electric Power Systems, 2024, 48 (13): 1- 8. | |
| 13 |
WEN Y F, LI W Y, HUANG G, et al. Frequency dynamics constrained unit commitment with battery energy storage[J]. IEEE Transactions on Power Systems, 2016, 31 (6): 5115- 5125.
DOI |
| 14 |
WEN Y F, ZHAN J P, CHUNG C Y, et al. Frequency stability enhancement of integrated AC/VSC-MTDC systems with massive infeed of offshore wind generation[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5135- 5146.
DOI |
| 15 | 王博, 杨德友, 蔡国伟. 大规模风电并网条件下考虑动态频率约束的机组组合[J]. 电网技术, 2020, 44 (7): 2513- 2519. |
| WANG Bo, YANG Deyou, CAI Guowei. Dynamic frequency constraint unit commitment in large-scale wind power grid connection[J]. Power System Technology, 2020, 44 (7): 2513- 2519. | |
| 16 | 陶仁峰, 李凤婷, 李燕青, 等. 基于系统频率响应特征的电网广义旋转备用优化配置[J]. 电力系统自动化, 2019, 43 (9): 82- 91. |
| TAO Renfeng, LI Fengting, LI Yanqing, et al. Optimal configuration of generalized spinning reverse for power grid based on characteristics of system frequency response[J]. Automation of Electric Power Systems, 2019, 43 (9): 82- 91. | |
| 17 | 刘珏麟, 余娟, 杨知方, 等. 面向电力系统概率稳定性提升的风电虚拟惯量参数优化方法[J]. 中国电机工程学报, 2023, 43 (17): 6602- 6614. |
| LIU Juelin, YU Juan, YANG Zhifang, et al. Virtual inertia parameter optimization method for power system probabilistic stability improvement[J]. Proceedings of the CSEE, 2023, 43 (17): 6602- 6614. | |
| 18 |
LUO J Q, TENG F, BU S Q. Stability-constrained power system scheduling: a review[J]. IEEE Access, 2020, 8, 219331- 219343.
DOI |
| 19 | 张桂红, 刘飞, 王世斌, 等. 高比例新能源电力系统频率稳定性的惯量需求分析[J]. 电力系统及其自动化学报, 2022, 34 (7): 81- 87. |
| ZHANG Guihong, LIU Fei, WANG Shibin, et al. Inertia requirement analysis of frequency stability of renewable-dominant power system[J]. Proceedings of the CSU-EPSA, 2022, 34 (7): 81- 87. | |
| 20 | 林晓煌, 文云峰, 杨伟峰. 惯量安全域: 概念、特点及评估方法[J]. 中国电机工程学报, 2021, 41 (9): 3065- 3079. |
| LIN Xiaohuang, WEN Yunfeng, YANG Weifeng. Inertia security region: concept, characteristics, and assessment method[J]. Proceedings of the CSEE, 2021, 41 (9): 3065- 3079. | |
| 21 | 陆艺丹, 况理, 叶希, 等. 源网荷储协调参与的运行备用容量分配策略及优化模型[J]. 电力自动化设备, 2024, 44 (7): 156- 164. |
| LU Yidan, KUANG Li, YE Xi, et al. Operating reserve capacity allocation strategy and optimization model with coordinated participation of source-network-load-storage[J]. Electric Power Automation Equipment, 2024, 44 (7): 156- 164. | |
| 22 | 马覃峰, 安甦, 刘明顺, 等. 考虑风光储调频贡献度的新型电力系统频率特性[J]. 南方电网技术, 2024, 18 (11): 129- 140. |
| MA Qinfeng, AN Su, LIU Mingshun, et al. Frequency characteristics of new power system considering the frequency modulation contribution of wind power-photovoltaic-energy storage[J]. Southern Power System Technology, 2024, 18 (11): 129- 140. | |
| 23 | 李成翔, 杜艳丽, 朱益华, 等. 基于风电机组频率主动支撑的多时间尺度调频控制策略[J]. 南方电网技术, 2024, 18 (3): 83- 92. |
| LI Chengxiang, DU Yanli, ZHU Yihua, et al. Multi-time scale frequency regulation control strategy based on frequency active support of wind turbines[J]. Southern Power System Technology, 2024, 18 (3): 83- 92. | |
| 24 | 秦颖婕, 李文博, 伍双喜, 等. 利用本地频率线性分量的电力系统功率缺额估计方法[J]. 南方电网技术, 2023, 17 (8): 96- 103, 112. |
| QIN Yingjie, LI Wenbo, WU Shuangxi, et al. Power deficit estimation method of power system based on the linear component of local frequency[J]. Southern Power System Technology, 2023, 17 (8): 96- 103, 112. | |
| 25 | 黄明增, 文云峰, 苟竞, 等. 计及频率偏移分布与惩罚代价的最大频率偏移预测方法[J]. 电力系统自动化, 2021, 45 (23): 51- 59. |
| HUANG Mingzeng, WEN Yunfeng, GOU Jing, et al. Maximum frequency deviation prediction method considering frequency deviation distribution and penalty cost[J]. Automation of Electric Power Systems, 2021, 45 (23): 51- 59. | |
| 26 |
LEI X, LERCH E, XIE C Y. Frequency security constrained short-term unit commitment[J]. Electric Power Systems Research, 2002, 60 (3): 193- 200.
DOI |
| 27 |
RESTREPO J F, GALIANA F D. Unit commitment with primary frequency regulation constraints[J]. IEEE Transactions on Power Systems, 2005, 20 (4): 1836- 1842.
DOI |
| 28 |
CHANG G W, CHUANG C S, LU T K, et al. Frequency-regulating reserve constrained unit commitment for an isolated power system[J]. IEEE Transactions on Power Systems, 2013, 28 (2): 578- 586.
DOI |
| 29 | DALY P, FLYNN D, CUNNIFFE N. Inertia considerations within unit commitment and economic dispatch for systems with high non-synchronous penetrations[C]//2015 IEEE Eindhoven Power Tech. Eindhoven, Netherlands. IEEE, 2015: 1–6. |
| 30 | FU X B, WANG Y, ZHANG H F, et al. Frequency-constrained stochastic unit commitment considering voltage security[C]//2023 IEEE 6th International Electrical and Energy Conference (CIEEC). Hefei, China. IEEE, 2023: 2053–2057. |
| 31 |
GU H J, YAN R F, SAHA T K, et al. Zonal inertia constrained generator dispatch considering load frequency relief[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 3065- 3077.
DOI |
| 32 |
HE Y L, ZHONG H W, RUAN G C, et al. Multi-area asynchronous grid operation with frequency reserve sharing[J]. IEEE Transactions on Power Systems, 2024, 39 (6): 7203- 7215.
DOI |
| 33 |
TUO M J, LI X P. Security-constrained unit commitment considering locational frequency stability in low-inertia power grids[J]. IEEE Transactions on Power Systems, 2023, 38 (5): 4134- 4147.
DOI |
| 34 | 韩磊, 胥国毅, 王程, 等. 新能源电力系统调频资源与频率时空动态关联分析及分布表征[J]. 中国电机工程学报, 2025, 45 (13): 5106- 5119. |
| HAN Lei, XU Guoyi, WANG Cheng, et al. Correlation analysis and distribution characterization of frequency regulation resources and frequency spatiotemporal dynamics in renewable energy power systems[J]. Proceedings of the CSEE, 2025, 45 (13): 5106- 5119. | |
| 35 | Electricity Network Association. Loss of mains protection settings for all small generator[R]. |
| 36 |
JIANG S F, HU Q R, LI F X, et al. Unlock the flexibility of HVDC interconnected systems: an enhanced emergency frequency response-enforced unit commitment model[J]. IEEE Transactions on Power Systems, 2025, 40 (3): 2451- 2464.
DOI |
| 37 |
XU T, JANG W, OVERBYE T. Commitment of fast-responding storage devices to mimic inertia for the enhancement of primary frequency response[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1219- 1230.
DOI |
| 38 |
BADESA L, TENG F, STRBAC G. Optimal portfolio of distinct frequency response services in low-inertia systems[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4459- 4469.
DOI |
| 39 |
SOKOLER L E, VINTER P, BÆRENTSEN R, et al. Contingency-constrained unit commitment in meshed isolated power systems[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3516- 3526.
DOI |
| 40 | 文云峰, 林晓煌. 孤岛与并网模式下微电网最低惯量需求评估[J]. 中国电机工程学报, 2021, 41 (6): 2040- 2053. |
| WEN Yunfeng, LIN Xiaohuang. Minimum inertia requirement assessment of microgrids in islanded and grid-connected modes[J]. Proceedings of the CSEE, 2021, 41 (6): 2040- 2053. | |
| 41 |
CHU Z D, CUI G X, TENG F. Scheduling of software-defined microgrids for optimal frequency regulation[J]. IEEE Transactions on Sustainable Energy, 2024, 15 (3): 1715- 1728.
DOI |
| 42 | 况理, 文云峰, 陆艺丹, 等. 含虚拟同步机的微电网频率稳定约束优化调度模型研究[J]. 中国电机工程学报, 2022, 42 (1): 71- 83. |
| KUANG Li, WEN Yunfeng, LU Yidan, et al. Frequency stability constrained optimal dispatch model of microgrid with virtual synchronous machines[J]. Proceedings of the CSEE, 2022, 42 (1): 71- 83. | |
| 43 |
ZHENG S W, LIAO K, YANG J W, et al. Optimal scheduling of distribution network with autonomous microgrids: frequency security constraints and uncertainties[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (1): 613- 629.
DOI |
| 44 |
DALY P, QAZI H W, FLYNN D. RoCoF-constrained scheduling incorporating non-synchronous residential demand response[J]. IEEE Transactions on Power Systems, 2019, 34 (5): 3372- 3383.
DOI |
| 45 | 赵书强, 吴博, 李志伟, 等. 风电-储能参与调频的高比例风电电力系统运行经济性分析[J]. 南方电网技术, 2023, 17 (4): 69- 76, 89. |
| ZHAO Shuqiang, WU Bo, LI Zhiwei, et al. Operational economic analysis of high-proportion wind power system with wind power and energy storage participating in frequency regulation[J]. Southern Power System Technology, 2023, 17 (4): 69- 76, 89. | |
| 46 |
CHÁVEZ H, BALDICK R, SHARMA S. Governor rate-constrained OPF for primary frequency control adequacy[J]. IEEE Transactions on Power Systems, 2014, 29 (3): 1473- 1480.
DOI |
| 47 |
SUN D L, HAN X S, ZHANG B, et al. Frequency aware robust economic dispatch[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4 (2): 200- 210.
DOI |
| 48 | RAGHUNATHAN A U. Homogeneous formulation of convex quadratic programs for infeasibility detection[C]//2021 60th IEEE Conference on Decision and Control (CDC). Austin, TX, USA. IEEE, 2021: 968–973. |
| 49 |
WANG L C, YANG Y, GU H J, et al. Bottleneck generator identification and the corresponding N-1 frequency security constrained intraday generator dispatch[J]. IEEE Transactions on Power Systems, 2023, 38 (1): 739- 752.
DOI |
| 50 |
LEE Y, BALDICK R. A frequency-constrained stochastic economic dispatch model[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 2301- 2312.
DOI |
| 51 |
SHE B X, LI F X, CUI H T, et al. Virtual inertia scheduling (VIS) for real-time economic dispatch of IBR-penetrated power systems[J]. IEEE Transactions on Sustainable Energy, 2024, 15 (2): 938- 951.
DOI |
| 52 |
GUGGILAM S S, ZHAO C H, DALL'ANESE E, et al. Optimizing DER participation in inertial and primary-frequency response[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5194- 5205.
DOI |
| 53 |
WANG Z G, WU W C, ZHANG B M. A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids[J]. IEEE Transactions on Smart Grid, 2016, 7 (1): 19- 31.
DOI |
| 54 |
KAMALI S, AMRAEE T, FOTUHI-FIRUZABAD M. Controlled islanding for enhancing grid resilience against power system blackout[J]. IEEE Transactions on Power Delivery, 2021, 36 (4): 2386- 2396.
DOI |
| 55 | 胡志勇, 黄志博, 王博, 等. 考虑多重死区影响的储能电站虚拟惯量协调优化策略[J/OL]. 储能科学与技术, 1–13[2025-02-10]. https://doi.org/10.19799/j.cnki.2095-4239.2024.1187. |
| HU Zhiyong, HUANG Zhibo, WANG Bo, et al . Virtual inertia optimization strategy for energy storage power plants considering multiple deadband[J/OL]. Energy Storage Science and Technology , 1–13[2025-02-10]. https://doi.org/10.19799/j.cnki.2095-4239.2024.1187. | |
| 56 | 郑峰, 苏明鸿, 陈静, 等. 基于改进模型预测的并网变换器自适应虚拟惯性控制策略研究[J]. 电力系统保护与控制, 2024, 52 (13): 35- 46. |
| ZHENG Feng, SU Minghong, CHEN Jing, et al. An adaptive virtual inertia control strategy for a grid-connected converter based on improved model prediction[J]. Power System Protection and Control, 2024, 52 (13): 35- 46. | |
| 57 | ALTAF A, KUMAR M, BISWAS D, et al. Virtual inertia controller design based on mixed sensitivity constraint H∞ approach for load frequency regulation of islanded AC microgrid[J]. IEEE Access, 2024, 12, 102328- 102336. |
| 58 | 竺如洁, 韦化, 白晓清. 多源动态最优潮流的分布鲁棒优化方法[J]. 中国电机工程学报, 2020, 40 (11): 3489- 3498. |
| ZHU Rujie, WEI Hua, BAI Xiaoqing. Distributionally robust optimization of multi-energy dynamic optimal power flow[J]. Proceedings of the CSEE, 2020, 40 (11): 3489- 3498. | |
| 59 | 陈杰, 程静, 王维庆, 等. 应用多参数协同自适应方法的虚拟同步发电机控制策略[J]. 电力系统保护与控制, 2024, 52 (23): 74- 85. |
| CHEN Jie, CHENG Jing, WANG Weiqing, et al. Control strategy for a virtual synchronous generator using a multi-parameter cooperative adaptive method[J]. Power System Protection and Control, 2024, 52 (23): 74- 85. | |
| 60 | LI Y J, HU P F, CAO Y, et al. Virtual inertia estimation for grid-forming converter based on deep reinforcement learning method[C]//2024 IEEE 7th International Electrical and Energy Conference (CIEEC). Harbin, China. IEEE, 2024: 1946–1951. |
| 61 | 董雷, 涂淑琴, 李烨, 等. 基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理[J]. 电网技术, 2020, 44 (3): 973- 983. |
| DONG Lei, TU Shuqin, LI Ye, et al. A Stackelberg game model for dynamic pricing and energy management of multiple virtual power plants using metamodel-based optimization method[J]. Power System Technology, 2020, 44 (3): 973- 983. | |
| 62 |
LIM S, PARK J W. Hierarchical control strategy for effective virtual frequency responses of multiple WPPs[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 576- 586.
DOI |
| 63 | 虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略[J]. 电力系统自动化, 2019, 43 (12): 36- 43. |
| YU Linbo, KOU Peng, FENG Yutao, et al. Model predictive control strategy for combined wind-storage system to participate in frequency response[J]. Automation of Electric Power Systems, 2019, 43 (12): 36- 43. | |
| 64 | 朱兰, 董凯旋, 唐陇军, 等. 计及同步机惯性与储能虚拟惯性价值的电能、惯性及一次调频联合优化出清模型[J]. 中国电机工程学报, 2024, 44 (19): 7543- 7555. |
| ZHU Lan, DONG Kaixuan, TANG Longjun, et al. Joint optimal clearing model for electric energy, inertia and primary frequency response considering synchronous inertia and energy storage virtual inertia values[J]. Proceedings of the CSEE, 2024, 44 (19): 7543- 7555. | |
| 65 | 任景, 高敏, 程松, 等. 面向新能源不确定性的西北电力电量平衡机制[J]. 中国电力, 2023, 56 (9): 66- 78. |
| REN Jing, GAO Min, CHENG Song, et al. A balance method for power supply-demand adapting to high uncertainties of renewable energy in northwest power grid[J]. Electric Power, 2023, 56 (9): 66- 78. | |
| 66 |
GAO R Z, LI Q W, DAI L, et al. Workflow-based fast data-driven predictive control with disturbance observer in cloud-edge collaborative architecture[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21 (3): 2816- 2840.
DOI |
| 67 |
VEERASAMY V, SAMPATH L P M I, SINGH S, et al. Blockchain-based decentralized frequency control of microgrids using federated learning fractional-order recurrent neural network[J]. IEEE Transactions on Smart Grid, 2024, 15 (1): 1089- 1102.
DOI |
| 68 | 张进, 李少林, 王伟胜, 等. 双馈风电机组虚拟惯量控制量化分析与参数优化整定[J]. 电网技术, 2023, 47 (4): 1369- 1377. |
| ZHANG Jin, LI Shaolin, WANG Weisheng, et al. Quantitative analysis and parameter optimization of virtual inertia control for doubly fed wind turbine[J]. Power System Technology, 2023, 47 (4): 1369- 1377. | |
| 69 |
DÖRFLER F, BULLO F. Synchronization and transient stability in power networks and nonuniform kuramoto oscillators[J]. SIAM Journal on Control and Optimization, 2012, 50 (3): 1616- 1642.
DOI |
| 70 | 林继灿, 刘沈全, 王钢, 等. 基于一致性算法的多虚拟同步机功率振荡协调抑制[J]. 电网技术, 2023, 47 (11): 4668- 4682. |
| LIN Jican, LIU Shenquan, WANG Gang, et al. Coordinated power oscillation suppression of multi-VSG based on consensus algorithm[J]. Power System Technology, 2023, 47 (11): 4668- 4682. | |
| 71 | 李劲松, 沈琦丰, 李国锋, 等. 考虑虚拟电阻局限的电网电压跌落VSG暂态稳定性提升[J]. 高电压技术, 2024, 50 (8): 3665- 3679. |
| LI Jinsong, SHEN Qifeng, LI Guofeng, et al. Transient stability enhancement of VSG under grid voltage sag considering the limitation of virtual resistance[J]. High Voltage Engineering, 2024, 50 (8): 3665- 3679. | |
| 72 |
DVORKIN Y, HENNEAUX P, KIRSCHEN D S, et al. Optimizing primary response in preventive security-constrained optimal power flow[J]. IEEE Systems Journal, 2018, 12 (1): 414- 423.
DOI |
| 73 |
GU H J, YAN R F, SAHA T K, et al. System strength and inertia constrained optimal generator dispatch under high renewable penetration[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2392- 2406.
DOI |
| 74 |
YANG Y, PENG J C, YE Z S. A market clearing mechanism considering primary frequency response rate[J]. IEEE Transactions on Power Systems, 2021, 36 (6): 5952- 5955.
DOI |
| 75 |
TENG F, TROVATO V, STRBAC G. Stochastic scheduling with inertia-dependent fast frequency response requirements[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1557- 1566.
DOI |
| 76 |
TROVATO V. System scheduling with optimal time-varying delivery intervals for frequency response[J]. IEEE Transactions on Power Systems, 2022, 37 (6): 4270- 4285.
DOI |
| 77 |
PENG Z F, PENG Q, ZHANG Y M, et al. Online inertia allocation for grid-connected renewable energy systems based on generic ASF model under frequency nadir constraint[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 1615- 1627.
DOI |
| 78 |
WEN Y F, CHUNG C Y, YE X. Enhancing frequency stability of asynchronous grids interconnected with HVDC links[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1800- 1810.
DOI |
| 79 |
AHMADI H, GHASEMI H. Security-constrained unit commitment with linearized system frequency limit constraints[J]. IEEE Transactions on Power Systems, 2014, 29 (4): 1536- 1545.
DOI |
| 80 |
ZHANG Z Y, DU E S, TENG F, et al. Modeling frequency dynamics in unit commitment with a high share of renewable energy[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4383- 4395.
DOI |
| 81 |
LI H, QIAO Y, LU Z X, et al. Frequency-constrained stochastic planning towards a high renewable target considering frequency response support from wind power[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4632- 4644.
DOI |
| 82 |
ZHAO X H, WEI H, QI J J, et al. Frequency stability constrained optimal power flow incorporating differential algebraic equations of governor dynamics[J]. IEEE Transactions on Power Systems, 2021, 36 (3): 1666- 1676.
DOI |
| 83 |
PATURET M, MARKOVIC U, DELIKARAOGLOU S, et al. Stochastic unit commitment in low-inertia grids[J]. IEEE Transactions on Power Systems, 2020, 35 (5): 3448- 3458.
DOI |
| 84 | 江博游, 徐华廷, 郭创新, 等. 计及决策依赖不确定性和禁止转速区间的频率约束风火协同备用优化模型[J]. 中国电机工程学报, 2024, 44 (23): 9213- 9225. |
| JIANG Boyou, XU Huating, GUO Chuangxin, et al. Frequency constrained wind and thermal power coordinated reserve optimization model considering decision dependent uncertainty and prohibited rotor speed zone[J]. Proceedings of the CSEE, 2024, 44 (23): 9213- 9225. | |
| 85 |
ZHANG Y C, CHEN C, LIU G D, et al. Approximating trajectory constraints with machine learning–microgrid islanding with frequency constraints[J]. IEEE Transactions on Power Systems, 2021, 36 (2): 1239- 1249.
DOI |
| 86 |
ZHANG Y C, CUI H T, LIU J Z, et al. Encoding frequency constraints in preventive unit commitment using deep learning with region-of-interest active sampling[J]. IEEE Transactions on Power Systems, 2022, 37 (3): 1942- 1955.
DOI |
| 87 |
CAI X, ZHANG N, DU E S, et al. Low inertia power system planning considering frequency quality under high penetration of renewable energy[J]. IEEE Transactions on Power Systems, 2024, 39 (2): 4537- 4548.
DOI |
| 88 |
LAGOS D T, HATZIARGYRIOU N D. Data-driven frequency dynamic unit commitment for island systems with high RES penetration[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4699- 4711.
DOI |
| 89 |
ZHANG J W, CHEN Z C, ZHANG N, et al. Frequency-constrained unit commitments with linear rules extracted from simulation results considering regulations from battery storage[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11 (4): 1041- 1052.
DOI |
| 90 |
LIU L K, HU Z C, WEN Y L, et al. Modeling of frequency security constraints and quantification of frequency control reserve capacities for unit commitment[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 2080- 2092.
DOI |
| 91 | 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40 (16): 5179- 5192. |
| SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40 (16): 5179- 5192. | |
| 92 |
BADESA L, TENG F, STRBAC G. Simultaneous scheduling of multiple frequency services in stochastic unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34 (5): 3858- 3868.
DOI |
| 93 |
TENG F, STRBAC G. Assessment of the role and value of frequency response support from wind plants[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 586- 595.
DOI |
| 94 |
DING T, ZENG Z Y, QU M, et al. Two-stage chance-constrained stochastic thermal unit commitment for optimal provision of virtual inertia in wind-storage systems[J]. IEEE Transactions on Power Systems, 2021, 36 (4): 3520- 3530.
DOI |
| 95 |
YANG Y, PENG J C, YE C J, et al. A criterion and stochastic unit commitment towards frequency resilience of power systems[J]. IEEE Transactions on Power Systems, 2022, 37 (1): 640- 652.
DOI |
| 96 |
ZHANG Z, ZHOU M, WU Z Y, et al. A frequency security constrained scheduling approach considering wind farm providing frequency support and reserve[J]. IEEE Transactions on Sustainable Energy, 2022, 13 (2): 1086- 1100.
DOI |
| 97 |
YANG L, LI Z H, XU Y L, et al. Frequency constrained scheduling under multiple uncertainties via data-driven distributionally robust chance-constrained approach[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (2): 763- 776.
DOI |
| 98 | 杜东来, 韩松, 荣娜. 基于时空图卷积网络和自注意机制的频率稳定性预测[J]. 电工技术学报, 2024, 39 (16): 4985- 4995. |
| DU Donglai, HAN Song, RONG Na. Frequency stability prediction method based on modified spatial temporal graph convolutional networks and self-attention[J]. Transactions of China Electrotechnical Society, 2024, 39 (16): 4985- 4995. |
| [1] | 谭玲玲, 张文龙, 康志豪, 叶平峰, 高业豪, 张玉敏. 计及惯量响应与一次调频参数优化的新能源基地构网型储能规划[J]. 中国电力, 2025, 58(7): 147-161. |
| [2] | 许常昊, 关伟东, 王越, 张金帅, 王鹏, 周宁, 尚博文. 全功率小型变速抽水蓄能机组双层MPC虚拟惯量控制策略[J]. 中国电力, 2025, 58(2): 216-226. |
| [3] | 李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152. |
| [4] | 胡英杰, 李强, 李群. 考虑容量限制的构网型光储系统惯量与一次调频参数优化配置方法[J]. 中国电力, 2024, 57(10): 115-122. |
| [5] | 崔伟, 柴龙越, 王聪, 王炜, 汪莹, 杨仑. 基于改进凸松弛的新能源电网概率最优潮流快速计算方法[J]. 中国电力, 2024, 57(10): 166-171. |
| [6] | 项颂, 苏鹏, 吴坚, 刘鑫, 马继涛. 基于多源储能协同的交直流送端系统惯量优化控制模型[J]. 中国电力, 2023, 56(4): 68-76. |
| [7] | 李鹏华, 宋卓然, 吴文传. 部分可观测条件下的配电网数据驱动最优潮流模型[J]. 中国电力, 2023, 56(12): 51-57. |
| [8] | 薛溟枫, 毛晓波, 肖浩, 周毅斌, 浦骁威, 裴玮. 基于联邦学习的综合能源微网群协同优化运行方法[J]. 中国电力, 2023, 56(12): 164-173. |
| [9] | 李建华, 曹路, 杨仁炘, 邓桢彦, 李征, 蔡旭. 华东沿海风电场群电网主动频率支撑策略[J]. 中国电力, 2023, 56(11): 49-58, 112. |
| [10] | 孙志媛, 孙艳, 刘默斯, 宋益. 考虑碳流需求响应的电力系统低碳运行策略[J]. 中国电力, 2023, 56(11): 95-103. |
| [11] | 李茜, 苟璐旸, 李樊, 张安安, 郑雅迪, 周熙朋. 面向提供系统灵活性的风电场内机组优化运行[J]. 中国电力, 2022, 55(8): 23-30. |
| [12] | 刘櫂芮, 贾祺, 严干贵, 翟文超, 孙勇, 李宝聚. 基于惯量响应的双馈风电机组动态协调机理研究[J]. 中国电力, 2022, 55(7): 142-151. |
| [13] | 董昱, 董存, 于若英, 丁杰. 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55(3): 1-8. |
| [14] | 郭小龙, 张江飞, 亢朋朋, 杨桂兴, 孙谊媊, 袁铁江, 刘勇. 含基于PI控制受端二次调频的特高压直流虚拟同步控制策略[J]. 中国电力, 2022, 55(11): 66-72. |
| [15] | 曾琮, 黄强, 陈德, 郑晓莹, 孟安波. 基于改进纵横交叉算法的电网最优潮流计算[J]. 中国电力, 2021, 54(9): 9-16. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编