中国电力 ›› 2024, Vol. 57 ›› Issue (9): 1-9.DOI: 10.11930/j.issn.1004-9649.202405093
周原冰1,2(), 张士宁1(
), 侯方心1(
), 任宏涛3(
), 徐鹏飞1(
)
收稿日期:
2024-05-22
接受日期:
2024-08-18
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
周原冰(1971—),男,硕士,高级工程师(教授级),从事能源电力发展战略规划、政策、能源互联网、能源经济环境等研究,E-mail:yuanbing-zhou@geidco.org基金资助:
Yuanbing ZHOU1,2(), Shining ZHANG1(
), Fangxin HOU1(
), Hongtao REN3(
), Pengfei XU1(
)
Received:
2024-05-22
Accepted:
2024-08-18
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
电力行业碳排放占能源领域碳排放40%以上,是能源领域减排的主战场。在全社会实现2030年前碳达峰背景下,电力行业碳达峰的时间关系着终端各个部门以及全社会碳达峰。首先,分析了已经实现碳达峰国家电力行业与全社会及其他行业碳达峰时间先后关系;其次,理论推导了电力行业碳达峰需要满足的条件以及不同情景下非化石能源发电量占比要求;最后,量化评估了电能替代对终端用能部门和全社会的碳减排影响。研究表明,电力生产碳强度下降率是决定电力行业碳达峰的重要约束条件,在2030年发电量为13万亿kW·h的基准情景下,非化石能源发电量占比需要达到56.3%,意味着2023—2030年每年新增风光装机容量2.4亿kW以上,电力行业可以在2030年实现碳达峰;电能替代促进全社会碳减排受电力生产非化石能源发电量占比影响,只有非化石能源发电量占比超过一定临界值,终端用能部门和全社会才能实现同步碳减排。
周原冰, 张士宁, 侯方心, 任宏涛, 徐鹏飞. 电力行业碳达峰及促进全社会碳减排影响分析[J]. 中国电力, 2024, 57(9): 1-9.
Yuanbing ZHOU, Shining ZHANG, Fangxin HOU, Hongtao REN, Pengfei XU. Analysis of Carbon Peaking in Power Sector and its Impact on Promoting Whole-Society Carbon Emissions Reduction[J]. Electric Power, 2024, 57(9): 1-9.
国家 | 全社会 | 电力 | 工业 | 交通 | 其他 | |||||
德国 | 1979 | 1979 | 1973 | 1999 | 1979 | |||||
美国 | 2007 | 2007 | 1979 | 2007 | 1970 | |||||
英国 | 1970 | 1979 | 1973 | 2007 | 1979 | |||||
法国 | 1973 | 1976 | 1971 | 2001 | 1973 | |||||
加拿大 | 2007 | 2003 | 1974 | 未达峰 | 1972 | |||||
意大利 | 2004 | 2006 | 1974 | 2007 | 2005 | |||||
瑞士 | 1970 | 1996 | 1973 | 2007 | 1976 | |||||
西班牙 | 2007 | 2007 | 2004 | 2007 | 2006 |
表 1 世界主要国家全社会碳达峰年份及行业达峰年份比较
Table 1 Comparison of carbon peaking time for the whole-society and various industries in major countries
国家 | 全社会 | 电力 | 工业 | 交通 | 其他 | |||||
德国 | 1979 | 1979 | 1973 | 1999 | 1979 | |||||
美国 | 2007 | 2007 | 1979 | 2007 | 1970 | |||||
英国 | 1970 | 1979 | 1973 | 2007 | 1979 | |||||
法国 | 1973 | 1976 | 1971 | 2001 | 1973 | |||||
加拿大 | 2007 | 2003 | 1974 | 未达峰 | 1972 | |||||
意大利 | 2004 | 2006 | 1974 | 2007 | 2005 | |||||
瑞士 | 1970 | 1996 | 1973 | 2007 | 1976 | |||||
西班牙 | 2007 | 2007 | 2004 | 2007 | 2006 |
图 6 电力行业2030年碳达峰情景下发电量与非化石能源发电量占比关系理论曲线
Fig.6 Theoretical curve of proportion of non-fossil fuel power generation versus power generation for carbon peaking in power sector in 2030
项目 | 煤炭 | 电力 | ||
热需求/TJ | 1 | 1 | ||
热效率 | 0.70 | 0.98 | ||
能源量/TJ | 1.43 | 1.02 | ||
碳排放因子/(t•TJ–1) | 98.30 | 241.69 | ||
非化石能源发电量占比/% | — | 43 | ||
碳排放/t | 140.4 | 140.4 |
表 2 工业部门电力生产非化石能源发电量占比临界值分析
Table 2 Analysis on the critical value of proportion of non-fossil fuel power generation in industrial sector
项目 | 煤炭 | 电力 | ||
热需求/TJ | 1 | 1 | ||
热效率 | 0.70 | 0.98 | ||
能源量/TJ | 1.43 | 1.02 | ||
碳排放因子/(t•TJ–1) | 98.30 | 241.69 | ||
非化石能源发电量占比/% | — | 43 | ||
碳排放/t | 140.4 | 140.4 |
图 7 电力生产非化石能源发电量占比对工业部门电能替代减排效果影响 注:图中0%、20%、40%、60%、80%、100%为电能替代率(下同),纵坐标为提供单位热值对应的碳排放。
Fig.7 The impact of proportion of non-fossil fuel power generation on emissions reduction through electricity substitution in industrial sector
图 8 电力生产非化石能源发电量占比对交通部门电能替代减排效果影响
Fig.8 The impact of proportion of non-fossil fuel power generation on emissions reduction through electricity substitution in transportation sector
项目 | 天然气 | 电力 | ||
热需求/TJ | 1 | 1 | ||
热效率 | 0.58 | 0.90 | ||
能源量/TJ | 1.72 | 1.11 | ||
碳排放因子/(t•TJ–1) | 54.58 | 241.69 | ||
非化石能源发电量占比/% | — | 65 | ||
碳排放/t | 94.1 | 94.1 |
表 3 建筑部门电力生产非化石能源发电量占比临界值分析
Table 3 Analysis on the critical value of the proportion of non-fossil fuel power generation in building sector
项目 | 天然气 | 电力 | ||
热需求/TJ | 1 | 1 | ||
热效率 | 0.58 | 0.90 | ||
能源量/TJ | 1.72 | 1.11 | ||
碳排放因子/(t•TJ–1) | 54.58 | 241.69 | ||
非化石能源发电量占比/% | — | 65 | ||
碳排放/t | 94.1 | 94.1 |
图 9 电力生产非化石能源发电量占比对建筑部门电能替代减排效果影响
Fig.9 The impact of proportion of non-fossil fuel power generation on emissions reduction through electricity substitution in building sector
图 10 工业、交通、建筑、农业电能替代减排的电力生产非化石能源发电量占比临界值
Fig.10 Critical values of the proportion of non-fossil fuel power generation for emissions reduction in industry, transportation, building, and agriculture sectors industrial
1 | 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55 (5): 1- 11. |
ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022, 55 (5): 1- 11. | |
2 | 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23 (2): 17- 24. |
YU Biying, ZHAO Guangpu, AN Runying, et al. Research on China's CO2 emission pathway under carbon neutral target[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23 (2): 17- 24. | |
3 |
NIU Z H, XIONG J L, DING X S, et al. Analysis of China's carbon peak achievement in 2025[J]. Energies, 2022, 15 (14): 5041.
DOI |
4 |
FANG G C, WANG L, GAO Z Y, et al. How to advance China's carbon emission peak? —a comparative analysis of energy transition in China and the USA[J]. Environmental Science and Pollution Research, 2022, 29 (47): 71487- 71501.
DOI |
5 |
ZHANG S N, YANG F, LIU C Y, et al. Study on global industrialization and industry emission to achieve the 2 ℃ goal based on MESSAGE model and LMDI approach[J]. Energies, 2020, 13 (4): 825.
DOI |
6 | 张士宁, 谭新, 侯方心, 等. 全球碳中和形势盘点与发展指数研究[J]. 全球能源互联网, 2021, 4 (3): 264- 272. |
ZHANG Shining, TAN Xin, HOU Fangxin, et al. Research on global carbon neutrality target and development index[J]. Journal of Global Energy Interconnection, 2021, 4 (3): 264- 272. | |
7 | 朱法华, 王玉山, 徐振, 等. 中国电力行业碳达峰、碳中和的发展路径研究[J]. 电力科技与环保, 2021, 37 (3): 9- 16. |
ZHU Fahua, WANG Yushan, XU Zhen, et al. Research on the development path of carbon peak and carbon neutrality in China's power industry[J]. Electric Power Technology and Environmental Protection, 2021, 37 (3): 9- 16. | |
8 | 魏一鸣, 余碧莹, 唐葆君, 等. 中国碳达峰碳中和时间表与路线图研究[J]. 北京理工大学学报(社会科学版), 2022, 24 (4): 13- 26. |
WEI Yiming, YU Biying, TANG Baojun, et al. Roadmap for achieving China's carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24 (4): 13- 26. | |
9 |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23 (6): 1- 14.
DOI |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23 (6): 1- 14.
DOI |
|
10 |
SUN Z R, LIU Y D, YU Y N. China's carbon emission peak pre-2030: exploring multi-scenario optimal low-carbon behaviors for China's regions[J]. Journal of Cleaner Production, 2019, 231, 963- 979.
DOI |
11 |
MAI L N, RAN Q Y, WU H T. A LMDI decomposition analysis of carbon dioxide emissions from the electric power sector in Northwest China[J]. Natural Resource Modeling, 2020, 33 (4): e12284.
DOI |
12 |
MA Z Y, ZHANG S N, HOU F X, et al. Exploring the driving factors and their mitigation potential in global energy-related CO2 emission[J]. Global Energy Interconnection, 2020, 3 (5): 413- 422.
DOI |
13 |
叶爱山, 李晓华, 邓洋阳, 等. “双碳” 目标下中国碳达峰预测和减排路径研究[J]. 科技和产业, 2023, 23 (23): 34- 43.
DOI |
YE Aishan, LI Xiaohua, DENG Yangyang, et al. Research on China's carbon peak prediction and emission reduction path under the "dual carbon" goal[J]. Science Technology and Industry, 2023, 23 (23): 34- 43.
DOI |
|
14 |
LUO F, GUO Y, YAO M T, et al. Carbon emissions and driving forces of China's power sector: input-output model based on the disaggregated power sector[J]. Journal of Cleaner Production, 2020, 268, 121925.
DOI |
15 |
LUO S H, HU W H, LIU W, et al. Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060[J]. Renewable and Sustainable Energy Reviews, 2022, 166, 112618.
DOI |
16 |
TANG B J, LI R, YU B Y, et al. How to peak carbon emissions in China's power sector: a regional perspective[J]. Energy Policy, 2018, 120, 365- 381.
DOI |
17 |
SU K, LEE C M. When will China achieve its carbon emission peak? a scenario analysis based on optimal control and the STIRPAT model[J]. Ecological Indicators, 2020, 112, 106138.
DOI |
18 | 周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景[J]. 科学通报, 2024, 69 (8): 983- 989. |
ZHOU Xiaoxin, ZHAO Qiang, ZHANG Yuqiong. Prospect of China's energy and power system under dual carbon goals[J]. Chinese Science Bulletin, 2024, 69 (8): 983- 989. | |
19 |
QI Y, STERN N, HE J K, et al. The policy-driven peak and reduction of China's carbon emissions[J]. Advances in Climate Change Research, 2020, 11 (2): 65- 71.
DOI |
20 | 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16 (5): 632- 640. |
CHEN Yi, TIAN Chuan, CAO Ying, et al. Research on peaking carbon emissions of power sector in China and the emissions mitigation analysis[J]. Climate Change Research, 2020, 16 (5): 632- 640. | |
21 |
WU G Q, NIU D X. A study of carbon peaking and carbon neutral pathways in China's power sector under a 1.5℃ temperature control target[J]. Environmental Science and Pollution Research, 2022, 29 (56): 85062- 85080.
DOI |
22 | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41 (18): 6245- 6259. |
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41 (18): 6245- 6259. | |
23 | 张士宁, 马志远, 杨方, 等. 全球可再生能源发电减排技术及投资减排成效评估分析[J]. 全球能源互联网, 2020, 3 (4): 328- 338. |
ZHANG Shining, MA Zhiyuan, YANG Fang, et al. Assessment of carbon emission reduction and costs of global renewable energy investment[J]. Journal of Global Energy Interconnection, 2020, 3 (4): 328- 338. | |
24 |
DONG F, HUA Y F, YU B L. Peak carbon emissions in China: status, key factors and countermeasures—a literature review[J]. Sustainability, 2018, 10 (8): 2895.
DOI |
25 |
WANG Z X, ZHANG J J, PAN L, et al. Estimate of China's energy carbon emissions peak and analysis on electric power carbon emissions[J]. Advances in Climate Change Research, 2014, 5 (4): 181- 188.
DOI |
26 |
DAI D W, LI K X, ZHAO S H, et al. Research on prediction and realization path of carbon peak of construction industry based on EGM-BP model[J]. Frontiers in Energy Research, 2022, 10, 981097.
DOI |
27 | 国家统计局. 电力平衡表[EB/OL]. (2024-01-01)[2024-05-10]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0707&sj=2016. |
28 | 生态环境部. 发电设施企业温室气体排放核算与报告指南[S]. 北京: 生态环境部, 2022. |
29 |
李朝阳, 李永光, 周猛. 基于中国工况的轻型汽车油耗特性研究[J]. 小型内燃机与车辆技术, 2023, 52 (1): 57- 61.
DOI |
LI Chaoyang, LI Yongguang, ZHOU Meng. Research on fuel consumption characteristics of light-duty vehicle under China automotive test cycle[J]. Small Internal Combustion Engine and Vehicle Technique, 2023, 52 (1): 57- 61.
DOI |
|
30 |
余才光, 高上览, 汤伟诚, 等. 纯电动汽车电耗分析及未来电耗推测[J]. 制造业自动化, 2024, 46 (1): 191- 198.
DOI |
YU Caiguang, GAO Shanglan, TANG Weicheng, et al. Power consumption analysis and future power consumption forecast of pure electric vehicle[J]. Manufacturing Automation, 2024, 46 (1): 191- 198.
DOI |
[1] | 傅观君, 张富强, 夏鹏, 冯君淑, 张晋芳. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57(8): 67-74. |
[2] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[3] | 李旭东, 谭青博, 赵浩辰, 乔宁, 刘力纬, 谭彩霞, 谭忠富. 碳达峰背景下中国电力行业碳排放因素和脱钩效应[J]. 中国电力, 2024, 57(5): 88-98. |
[4] | 郑国光. 支撑“双碳”目标实现的问题辨识与关键举措研究[J]. 中国电力, 2023, 56(11): 1-8. |
[5] | 孙启星, 张超, 李成仁, 尤培培, 高效, 赵茜, 许钊, 刘思佳, 李炎林. “碳达峰、碳中和”目标下的电力系统成本及价格水平预测[J]. 中国电力, 2023, 56(1): 9-16. |
[6] | 董洁, 乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55(8): 202-212. |
[7] | 周德才, 陈金金, 刘波. 中国电力景气指数的混频非对称测度[J]. 中国电力, 2022, 55(6): 172-185. |
[8] | 周原冰, 杨方, 余潇潇, 江涵. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1-11. |
[9] | 石庆松, 秦蕊, 肖鹏, 欧阳丽炜, 熊刚, 张宏鑫, 王飞跃. 基于联盟链的电力物资采购数据共享激励机制[J]. 中国电力, 2022, 55(3): 87-96. |
[10] | 唐伟, 徐朝, 单葆国, 张煜, 吴鹏, 贾跃龙, 张春成, 谭清坤. 基于细分行业用能结构特征的“十四五”电能替代电量规划[J]. 中国电力, 2021, 54(7): 36-45. |
[11] | 王海洋, 荣健. 碳达峰、碳中和目标下中国核能发展路径分析[J]. 中国电力, 2021, 54(6): 86-94. |
[12] | 赵璞, 周满, 高建宇, 潘乐真, 刘自发, 谢浩铠. 基于电能替代的园区综合能源规划评价方法[J]. 中国电力, 2021, 54(4): 130-140. |
[13] | 朱法华, 许月阳, 孙尊强, 孙雪丽, 王圣. 中国燃煤电厂超低排放和节能改造的实践与启示[J]. 中国电力, 2021, 54(4): 1-8. |
[14] | 张运洲, 张宁, 代红才, 张丝钰, 吴潇雨, 薛美美. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1-11. |
[15] | 张运洲, 代红才, 吴潇雨, 陈睿, 张宁. 中国综合能源服务发展趋势与关键问题[J]. 中国电力, 2021, 54(2): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||