中国电力 ›› 2024, Vol. 57 ›› Issue (9): 1-9.DOI: 10.11930/j.issn.1004-9649.202405093

• 专稿 • 上一篇    下一篇

电力行业碳达峰及促进全社会碳减排影响分析

周原冰1,2(), 张士宁1(), 侯方心1(), 任宏涛3(), 徐鹏飞1()   

  1. 1. 全球能源互联网集团有限公司,北京 100031
    2. 全球能源互联网发展合作组织,北京 100031
    3. 华东理工大学 商学院,上海 200237
  • 收稿日期:2024-05-22 接受日期:2024-08-18 出版日期:2024-09-28 发布日期:2024-09-23
  • 作者简介:周原冰(1971—),男,硕士,高级工程师(教授级),从事能源电力发展战略规划、政策、能源互联网、能源经济环境等研究,E-mail:yuanbing-zhou@geidco.org
    张士宁(1987—),男,通信作者,博士,高级工程师,从事全球能源发展战略规划、能源经济与能源供需、可再生能源发电等研究,E-mail:shining-zhang@geidco.org
    侯方心(1990—),女,博士,高级工程师,从事能源规划、能源供需、综合评估模型、可再生能源发电等研究,E-mail:fangxin-hou@geidco.org
    任宏涛(1977—),男,博士,副教授,从事能源系统优化建模、能源系统多目标优化、能源大数据技术分析等研究,E-mail:ren@ecust.edu.cn
    徐鹏飞(1991—),男,博士,高级工程师,从事全球能源发展战略规划、电力系统规划等研究,E-mail:pengfei-xu@geidco.org
  • 基金资助:
    国家自然科学基金资助项目(72140006,72371102)。

Analysis of Carbon Peaking in Power Sector and its Impact on Promoting Whole-Society Carbon Emissions Reduction

Yuanbing ZHOU1,2(), Shining ZHANG1(), Fangxin HOU1(), Hongtao REN3(), Pengfei XU1()   

  1. 1. Global Energy Interconnection Group Co., Ltd., Beijing 100031, China
    2. Global Energy Interconnection Development and Cooperation Organization, Beijing 100031, China
    3. School of Business, East China University of Science and Technology, Shanghai 200237, China
  • Received:2024-05-22 Accepted:2024-08-18 Online:2024-09-28 Published:2024-09-23
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.72140006, No.72371102).

摘要:

电力行业碳排放占能源领域碳排放40%以上,是能源领域减排的主战场。在全社会实现2030年前碳达峰背景下,电力行业碳达峰的时间关系着终端各个部门以及全社会碳达峰。首先,分析了已经实现碳达峰国家电力行业与全社会及其他行业碳达峰时间先后关系;其次,理论推导了电力行业碳达峰需要满足的条件以及不同情景下非化石能源发电量占比要求;最后,量化评估了电能替代对终端用能部门和全社会的碳减排影响。研究表明,电力生产碳强度下降率是决定电力行业碳达峰的重要约束条件,在2030年发电量为13万亿kW·h的基准情景下,非化石能源发电量占比需要达到56.3%,意味着2023—2030年每年新增风光装机容量2.4亿kW以上,电力行业可以在2030年实现碳达峰;电能替代促进全社会碳减排受电力生产非化石能源发电量占比影响,只有非化石能源发电量占比超过一定临界值,终端用能部门和全社会才能实现同步碳减排。

关键词: 电力行业, 碳达峰, 碳强度, 非化石能源发电量占比, 电能替代

Abstract:

The carbon emissions from the power sector account for over 40% of the total carbon emissions in the energy sector, making it the primary battleground for emissions reduction in the energy sector. Against the backdrop of the whole society striving to achieve carbon peaking by 2030, the timing of power sector's carbon peaking is crucial for the end-use sectors and whole-society to achieve carbon peaking. Firstly, an analysis was conducted on the temporal relationship between the power sector's carbon peaking and the carbon peaking of the whole society and other sectors in countries that have already achieved carbon peaking. Secondly, theoretical derivations were made regarding the conditions that the power sector's carbon peaking needs to meet and the proportional requirements of non-fossil fuel power generation under different scenarios. Finally, a quantitative analysis was carried out on the impact of electricity substitution on emissions reduction in the end-use sectors and the whole society. The study indicates that the decline rate of carbon intensity in power production is a crucial constraint determining the power sector's carbon peaking. Under the baseline scenario that power generation reaches 13 TW•h in 2030, the proportion of non-fossil fuel power generation needs to reach 56.3%, which implies that the annual increase in newly installed capacity of wind and solar power should exceed 240 GW from 2023 to 2030 so that the power sector can achieve carbon peaking before 2030. The promotion of electricity substitution for emissions reduction in the whole society is influenced by the proportion of non-fossil fuel power generation in the total power generation. Only when the proportion exceeds a certain critical value can the synchronous emissions reduction in the end-use sectors and the whole society be achieved.

Key words: power sector, carbon peaking, carbon intensity, proportion of non-fossil fuel power generation, electricity substitution