中国电力 ›› 2024, Vol. 57 ›› Issue (5): 88-98.DOI: 10.11930/j.issn.1004-9649.202306019
• 新型能源体系下电碳协同市场机制及优化运行 • 上一篇 下一篇
李旭东1(), 谭青博2, 赵浩辰1, 乔宁3, 刘力纬4(
), 谭彩霞1, 谭忠富1(
)
收稿日期:
2023-06-05
接受日期:
2024-03-29
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
李旭东(1997—),男,博士研究生,从事电力技术经济研究,E-mail:1169771877@qq.com基金资助:
Xudong LI1(), Qingbo TAN2, Haochen ZHAO1, Ning QIAO3, Liwei LIU4(
), Caixia TAN1, Zhongfu TAN1(
)
Received:
2023-06-05
Accepted:
2024-03-29
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
探求电力行业CO2排放驱动因素和脱钩效应既能促进“双碳”目标实现,也有利于改善中国环境总体质量,极具现实意义。对2004—2020年中国电力行业CO2排放量进行测算,并采用LMDI模型和Tapio脱钩模型对电力行业CO2排放的驱动因素和脱钩状态进行研究,在此基础上基于SSA-LSSVM预测模型对中国电力行业2021—2030年CO2排放量和脱钩状态进行预测分析。研究结果表明:1)电力行业CO2排放影响因素中,经济增长是主要因素,电力生产结构效应和电力生产强度效应对电力行业CO2排放量起到明显的抑制作用;2)整个研究期内,电力行业CO2排放量与经济增长处于弱脱钩状态;3)从电力行业CO2排放预测值来看,基准情景、低碳情景、强低碳情景下电力行业CO2排放量均呈现上升趋势,2022—2030年电力行业CO2排放与经济增长均处于弱脱钩状态。基于研究结果,为降低中国电力行业CO2排放量,建议转变经济增长方式,实现经济绿色低碳增长;发展清洁能源,构建新型电力系统;推进低碳技术创新,实现电力行碳排放脱钩。
李旭东, 谭青博, 赵浩辰, 乔宁, 刘力纬, 谭彩霞, 谭忠富. 碳达峰背景下中国电力行业碳排放因素和脱钩效应[J]. 中国电力, 2024, 57(5): 88-98.
Xudong LI, Qingbo TAN, Haochen ZHAO, Ning QIAO, Liwei LIU, Caixia TAN, Zhongfu TAN. Carbon Emission Factors and Decoupling Effects of China's Power Industry under the Background of Carbon Peak[J]. Electric Power, 2024, 57(5): 88-98.
脱钩状态 | e | |||||||
脱钩 | 强脱钩 | <0 | >0 | (–∞, 0] | ||||
弱脱钩 | >0 | >0 | (0, 0.8] | |||||
衰弱脱钩 | <0 | <0 | (1.2, +∞) | |||||
连接 | 增长连接 | >0 | >0 | (0.8, 1.2] | ||||
衰弱连接 | <0 | <0 | (0.8, 1.2] | |||||
负脱钩 | 强负脱钩 | >0 | <0 | (–∞, 0] | ||||
弱负脱钩 | <0 | <0 | (0, 0.8] | |||||
增长负脱钩 | >0 | >0 | (1.2, +∞) |
表 1 脱钩状态判别标准
Table 1 Decoupling status discrimination criteria
脱钩状态 | e | |||||||
脱钩 | 强脱钩 | <0 | >0 | (–∞, 0] | ||||
弱脱钩 | >0 | >0 | (0, 0.8] | |||||
衰弱脱钩 | <0 | <0 | (1.2, +∞) | |||||
连接 | 增长连接 | >0 | >0 | (0.8, 1.2] | ||||
衰弱连接 | <0 | <0 | (0.8, 1.2] | |||||
负脱钩 | 强负脱钩 | >0 | <0 | (–∞, 0] | ||||
弱负脱钩 | <0 | <0 | (0, 0.8] | |||||
增长负脱钩 | >0 | >0 | (1.2, +∞) |
周期 | ||||||||||||
2004—2005 | –1.57 | –0.27 | –10.97 | –48.32 | 161.13 | 100.00 | ||||||
2005—2006 | –1.00 | –32.40 | 17.58 | –25.33 | 141.16 | 100.00 | ||||||
2006—2007 | –1.71 | –50.71 | 0.49 | –72.80 | 224.74 | 100.00 | ||||||
2007—2008 | –3.06 | –54.20 | –136.07 | –621.82 | 915.15 | 100.00 | ||||||
2008—2009 | –1.29 | –30.96 | 13.33 | –5.89 | 124.81 | 100.00 | ||||||
2009—2010 | –1.38 | –216.39 | –30.99 | –110.71 | 459.47 | 100.00 | ||||||
2010—2011 | –0.32 | –10.60 | 16.78 | –46.73 | 140.86 | 100.00 | ||||||
2011—2012 | –0.37 | 68.18 | –231.13 | –134.08 | 397.40 | 100.00 | ||||||
2012—2013 | –0.02 | 14.95 | –2.06 | 6.28 | 80.85 | 100.00 | ||||||
2013—2014 | 0.08 | 125.53 | 49.16 | 8.63 | –83.40 | 100.00 | ||||||
2014—2015 | 0.36 | 72.30 | 44.27 | 20.27 | –37.20 | 100.00 | ||||||
2015—2016 | –0.57 | 7.28 | –105.43 | 34.59 | 164.12 | 100.00 | ||||||
2016—2017 | –0.03 | 33.65 | –15.42 | –26.84 | 108.64 | 100.00 | ||||||
2017—2018 | –0.12 | –60.22 | –17.05 | 24.24 | 153.14 | 100.00 | ||||||
2018—2019 | 0.07 | 49.57 | –45.44 | –3.11 | 98.91 | 100.00 | ||||||
2019—2020 | –0.25 | 45.69 | –31.06 | 78.33 | 7.29 | 100.00 |
表 2 2004—2020年中国电力行业排放规模分解因素影响率
Table 2 China's electric power industry emissions decomposition factor impact rate for 2004-2020 单位:%
周期 | ||||||||||||
2004—2005 | –1.57 | –0.27 | –10.97 | –48.32 | 161.13 | 100.00 | ||||||
2005—2006 | –1.00 | –32.40 | 17.58 | –25.33 | 141.16 | 100.00 | ||||||
2006—2007 | –1.71 | –50.71 | 0.49 | –72.80 | 224.74 | 100.00 | ||||||
2007—2008 | –3.06 | –54.20 | –136.07 | –621.82 | 915.15 | 100.00 | ||||||
2008—2009 | –1.29 | –30.96 | 13.33 | –5.89 | 124.81 | 100.00 | ||||||
2009—2010 | –1.38 | –216.39 | –30.99 | –110.71 | 459.47 | 100.00 | ||||||
2010—2011 | –0.32 | –10.60 | 16.78 | –46.73 | 140.86 | 100.00 | ||||||
2011—2012 | –0.37 | 68.18 | –231.13 | –134.08 | 397.40 | 100.00 | ||||||
2012—2013 | –0.02 | 14.95 | –2.06 | 6.28 | 80.85 | 100.00 | ||||||
2013—2014 | 0.08 | 125.53 | 49.16 | 8.63 | –83.40 | 100.00 | ||||||
2014—2015 | 0.36 | 72.30 | 44.27 | 20.27 | –37.20 | 100.00 | ||||||
2015—2016 | –0.57 | 7.28 | –105.43 | 34.59 | 164.12 | 100.00 | ||||||
2016—2017 | –0.03 | 33.65 | –15.42 | –26.84 | 108.64 | 100.00 | ||||||
2017—2018 | –0.12 | –60.22 | –17.05 | 24.24 | 153.14 | 100.00 | ||||||
2018—2019 | 0.07 | 49.57 | –45.44 | –3.11 | 98.91 | 100.00 | ||||||
2019—2020 | –0.25 | 45.69 | –31.06 | 78.33 | 7.29 | 100.00 |
周期 | 脱钩指数 | 脱钩状态 | 周期 | 脱钩指数 | 脱钩状态 | |||||
2004—2005 | 0.5396 | 弱脱钩 | 2012—2013 | 1.1450 | 弱脱钩 | |||||
2005—2006 | 0.6112 | 弱脱钩 | 2013—2014 | –1.2065 | 强脱钩 | |||||
2006—2007 | 0.3843 | 弱脱钩 | 2014—2015 | –2.7414 | 强脱钩 | |||||
2007—2008 | 0.0991 | 弱脱钩 | 2015—2016 | 0.5901 | 弱脱钩 | |||||
2008—2009 | 0.7537 | 弱脱钩 | 2016—2017 | 0.8489 | 增长连接 | |||||
2009—2010 | 0.1945 | 弱脱钩 | 2017—2018 | 0.6140 | 弱脱钩 | |||||
2010—2011 | 0.6145 | 弱脱钩 | 2018—2019 | 0.9635 | 增长连接 | |||||
2011—2012 | 0.2394 | 弱脱钩 | 2019—2020 | 13.3877 | 增长负脱钩 |
表 3 2004—2020年中国电力行业排放与经济之间脱钩状态
Table 3 Decoupling status between emissions and economy in China's electric power industry, 2004-2020
周期 | 脱钩指数 | 脱钩状态 | 周期 | 脱钩指数 | 脱钩状态 | |||||
2004—2005 | 0.5396 | 弱脱钩 | 2012—2013 | 1.1450 | 弱脱钩 | |||||
2005—2006 | 0.6112 | 弱脱钩 | 2013—2014 | –1.2065 | 强脱钩 | |||||
2006—2007 | 0.3843 | 弱脱钩 | 2014—2015 | –2.7414 | 强脱钩 | |||||
2007—2008 | 0.0991 | 弱脱钩 | 2015—2016 | 0.5901 | 弱脱钩 | |||||
2008—2009 | 0.7537 | 弱脱钩 | 2016—2017 | 0.8489 | 增长连接 | |||||
2009—2010 | 0.1945 | 弱脱钩 | 2017—2018 | 0.6140 | 弱脱钩 | |||||
2010—2011 | 0.6145 | 弱脱钩 | 2018—2019 | 0.9635 | 增长连接 | |||||
2011—2012 | 0.2394 | 弱脱钩 | 2019—2020 | 13.3877 | 增长负脱钩 |
周期 | 碳排放 转换指数 | 燃料转 换指数 | 电力生产 结构指数 | 电力消费 强度指数 | 经济效 益指数 | |||||
2004—2005 | –0.0085 | –0.0015 | –0.0592 | –0.2607 | 0.8694 | |||||
2005—2006 | –0.0061 | –0.1980 | 0.1074 | –0.1548 | 0.8628 | |||||
2006—2007 | –0.0066 | –0.1949 | 0.0019 | –0.2798 | 0.8638 | |||||
2007—2008 | –0.0030 | –0.0537 | –0.1349 | –0.6164 | 0.9072 | |||||
2008—2009 | –0.0097 | –0.2334 | 0.1005 | –0.0444 | 0.9407 | |||||
2009—2010 | –0.0027 | –0.4209 | –0.0603 | –0.2153 | 0.8937 | |||||
2010—2011 | –0.0019 | –0.0651 | 0.1031 | –0.2871 | 0.8656 | |||||
2011—2012 | –0.0009 | 0.1632 | –0.5532 | –0.3209 | 0.9512 | |||||
2012—2013 | –0.0002 | 0.1712 | –0.0236 | 0.0719 | 0.9257 | |||||
2013—2014 | –0.0010 | –1.5146 | –0.5931 | –0.1042 | 1.0063 | |||||
2014—2015 | –0.0098 | –1.9820 | –1.2137 | –0.5557 | 1.0198 | |||||
2015—2016 | –0.0033 | 0.0430 | –0.6222 | 0.2041 | 0.9685 | |||||
2016—2017 | –0.0002 | 0.2857 | –0.1309 | –0.2279 | 0.9223 | |||||
2017—2018 | –0.0007 | –0.3697 | –0.1047 | 0.1489 | 0.9402 | |||||
2018—2019 | 0.0006 | 0.0478 | –0.4378 | –0.0299 | 0.9530 | |||||
2019—2020 | –0.0332 | 6.1168 | –4.1576 | 10.4863 | 0.9753 |
表 4 2004—2020年中国电力行业排放各驱动因素脱钩指数分解
Table 4 Decoupling index decomposition for each driving factor of emissions in China's electric power industry, 2004-2020
周期 | 碳排放 转换指数 | 燃料转 换指数 | 电力生产 结构指数 | 电力消费 强度指数 | 经济效 益指数 | |||||
2004—2005 | –0.0085 | –0.0015 | –0.0592 | –0.2607 | 0.8694 | |||||
2005—2006 | –0.0061 | –0.1980 | 0.1074 | –0.1548 | 0.8628 | |||||
2006—2007 | –0.0066 | –0.1949 | 0.0019 | –0.2798 | 0.8638 | |||||
2007—2008 | –0.0030 | –0.0537 | –0.1349 | –0.6164 | 0.9072 | |||||
2008—2009 | –0.0097 | –0.2334 | 0.1005 | –0.0444 | 0.9407 | |||||
2009—2010 | –0.0027 | –0.4209 | –0.0603 | –0.2153 | 0.8937 | |||||
2010—2011 | –0.0019 | –0.0651 | 0.1031 | –0.2871 | 0.8656 | |||||
2011—2012 | –0.0009 | 0.1632 | –0.5532 | –0.3209 | 0.9512 | |||||
2012—2013 | –0.0002 | 0.1712 | –0.0236 | 0.0719 | 0.9257 | |||||
2013—2014 | –0.0010 | –1.5146 | –0.5931 | –0.1042 | 1.0063 | |||||
2014—2015 | –0.0098 | –1.9820 | –1.2137 | –0.5557 | 1.0198 | |||||
2015—2016 | –0.0033 | 0.0430 | –0.6222 | 0.2041 | 0.9685 | |||||
2016—2017 | –0.0002 | 0.2857 | –0.1309 | –0.2279 | 0.9223 | |||||
2017—2018 | –0.0007 | –0.3697 | –0.1047 | 0.1489 | 0.9402 | |||||
2018—2019 | 0.0006 | 0.0478 | –0.4378 | –0.0299 | 0.9530 | |||||
2019—2020 | –0.0332 | 6.1168 | –4.1576 | 10.4863 | 0.9753 |
情景 | 城镇 化率 | 第三产业 经济占比 增长率 | 标准煤物 理消耗量 增长率 | 火力发 电量 增长率 | 年发 电量 增长率 | 第二 产业 增长率 | 人口 数据 增长率 | |||||||
基准 | 0.9 | 1.24 | 3.4~1.6 | –2.74 | 4.4 | 4.40 | 0.31~0.50 | |||||||
低碳 | 2.4 | 2.24 | 3.0~1.2 | –4.74 | 3.4 | 4.15 | 0.56~0.25 | |||||||
强低碳 | 3.9 | 3.24 | 2.6~0.8 | –6.74 | 2.4 | 3.90 | 0.81~0 |
表 5 2021—2030年情景参数年均增长率设定
Table 5 Average annual growth rate of scenario parameters set for 2021-2030 单位:%
情景 | 城镇 化率 | 第三产业 经济占比 增长率 | 标准煤物 理消耗量 增长率 | 火力发 电量 增长率 | 年发 电量 增长率 | 第二 产业 增长率 | 人口 数据 增长率 | |||||||
基准 | 0.9 | 1.24 | 3.4~1.6 | –2.74 | 4.4 | 4.40 | 0.31~0.50 | |||||||
低碳 | 2.4 | 2.24 | 3.0~1.2 | –4.74 | 3.4 | 4.15 | 0.56~0.25 | |||||||
强低碳 | 3.9 | 3.24 | 2.6~0.8 | –6.74 | 2.4 | 3.90 | 0.81~0 |
年份 | 实际值/ 亿t | SSA-LSSVM | LSSVM | |||||||||||
预测 值/亿t | 绝对误 差/亿t | 相对误 差/% | 预测 值/亿t | 绝对误 差/亿t | 相对误 差/% | |||||||||
2004 | 19.00 | 20.472 | 1.47 | 7.75 | 26.84 | 7.84 | 41.29 | |||||||
2005 | 21.14 | 21.983 | 0.85 | 4.00 | 27.29 | 6.16 | 29.12 | |||||||
2006 | 23.88 | 23.923 | 0.05 | 0.20 | 27.89 | 4.01 | 16.79 | |||||||
2007 | 26.11 | 25.710 | 0.40 | 1.53 | 28.51 | 2.40 | 9.18 | |||||||
2008 | 26.61 | 26.471 | 0.14 | 0.51 | 28.84 | 2.23 | 8.37 | |||||||
2009 | 28.09 | 27.540 | 0.55 | 1.97 | 29.33 | 1.24 | 4.41 | |||||||
2010 | 29.23 | 29.243 | 0.01 | 0.04 | 29.98 | 0.75 | 2.57 | |||||||
2011 | 32.94 | 31.941 | 1.00 | 3.02 | 30.88 | 2.06 | 6.26 | |||||||
2012 | 33.60 | 32.638 | 0.96 | 2.87 | 31.31 | 2.29 | 6.82 | |||||||
2013 | 36.60 | 34.547 | 2.05 | 5.61 | 32.05 | 4.55 | 12.44 | |||||||
2014 | 33.97 | 34.086 | 0.11 | 0.34 | 32.27 | 1.70 | 5.01 | |||||||
2015 | 31.93 | 33.367 | 1.44 | 4.50 | 32.43 | 0.50 | 1.57 | |||||||
2016 | 32.71 | 34.090 | 1.38 | 4.21 | 32.93 | 0.21 | 0.65 | |||||||
2017 | 35.35 | 35.863 | 0.51 | 1.45 | 33.60 | 1.75 | 4.94 | |||||||
2018 | 37.11 | 37.536 | 0.43 | 1.15 | 34.24 | 2.87 | 7.73 | |||||||
2019 | 38.95 | 38.758 | 0.19 | 0.49 | 34.67 | 4.28 | 10.99 | |||||||
2020 | 40.82 | 39.859 | 0.96 | 2.35 | 34.98 | 5.83 | 14.29 |
表 6 SSA-LSSVM和LSSVM预测模型对比
Table 6 Comparison of SSA-LSSVM and LSSVM prediction models
年份 | 实际值/ 亿t | SSA-LSSVM | LSSVM | |||||||||||
预测 值/亿t | 绝对误 差/亿t | 相对误 差/% | 预测 值/亿t | 绝对误 差/亿t | 相对误 差/% | |||||||||
2004 | 19.00 | 20.472 | 1.47 | 7.75 | 26.84 | 7.84 | 41.29 | |||||||
2005 | 21.14 | 21.983 | 0.85 | 4.00 | 27.29 | 6.16 | 29.12 | |||||||
2006 | 23.88 | 23.923 | 0.05 | 0.20 | 27.89 | 4.01 | 16.79 | |||||||
2007 | 26.11 | 25.710 | 0.40 | 1.53 | 28.51 | 2.40 | 9.18 | |||||||
2008 | 26.61 | 26.471 | 0.14 | 0.51 | 28.84 | 2.23 | 8.37 | |||||||
2009 | 28.09 | 27.540 | 0.55 | 1.97 | 29.33 | 1.24 | 4.41 | |||||||
2010 | 29.23 | 29.243 | 0.01 | 0.04 | 29.98 | 0.75 | 2.57 | |||||||
2011 | 32.94 | 31.941 | 1.00 | 3.02 | 30.88 | 2.06 | 6.26 | |||||||
2012 | 33.60 | 32.638 | 0.96 | 2.87 | 31.31 | 2.29 | 6.82 | |||||||
2013 | 36.60 | 34.547 | 2.05 | 5.61 | 32.05 | 4.55 | 12.44 | |||||||
2014 | 33.97 | 34.086 | 0.11 | 0.34 | 32.27 | 1.70 | 5.01 | |||||||
2015 | 31.93 | 33.367 | 1.44 | 4.50 | 32.43 | 0.50 | 1.57 | |||||||
2016 | 32.71 | 34.090 | 1.38 | 4.21 | 32.93 | 0.21 | 0.65 | |||||||
2017 | 35.35 | 35.863 | 0.51 | 1.45 | 33.60 | 1.75 | 4.94 | |||||||
2018 | 37.11 | 37.536 | 0.43 | 1.15 | 34.24 | 2.87 | 7.73 | |||||||
2019 | 38.95 | 38.758 | 0.19 | 0.49 | 34.67 | 4.28 | 10.99 | |||||||
2020 | 40.82 | 39.859 | 0.96 | 2.35 | 34.98 | 5.83 | 14.29 |
年份 | 基准情景 | 低碳情景 | 强低碳情景 | |||||||||
脱钩指数 | 脱钩状态 | 脱钩指数 | 脱钩状态 | 脱钩指数 | 脱钩状态 | |||||||
2021 | –0.03 | 强脱钩 | –0.27 | 强脱钩 | –0.61 | 强脱钩 | ||||||
2022 | 0.30 | 弱脱钩 | 0.20 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2023 | 0.30 | 弱脱钩 | 0.20 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2024 | 0.27 | 弱脱钩 | 0.19 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2025 | 0.29 | 弱脱钩 | 0.19 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2026 | 0.30 | 弱脱钩 | 0.20 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2027 | 0.28 | 弱脱钩 | 0.19 | 弱脱钩 | 0.13 | 弱脱钩 | ||||||
2028 | 0.31 | 弱脱钩 | 0.22 | 弱脱钩 | 0.15 | 弱脱钩 | ||||||
2029 | 0.34 | 弱脱钩 | 0.24 | 弱脱钩 | 0.17 | 弱脱钩 | ||||||
2030 | 0.31 | 弱脱钩 | 0.23 | 弱脱钩 | 0.17 | 弱脱钩 |
表 7 2021—2030年电力行业脱钩路径
Table 7 Decoupling path of the electric power industry for 2021-2030
年份 | 基准情景 | 低碳情景 | 强低碳情景 | |||||||||
脱钩指数 | 脱钩状态 | 脱钩指数 | 脱钩状态 | 脱钩指数 | 脱钩状态 | |||||||
2021 | –0.03 | 强脱钩 | –0.27 | 强脱钩 | –0.61 | 强脱钩 | ||||||
2022 | 0.30 | 弱脱钩 | 0.20 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2023 | 0.30 | 弱脱钩 | 0.20 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2024 | 0.27 | 弱脱钩 | 0.19 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2025 | 0.29 | 弱脱钩 | 0.19 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2026 | 0.30 | 弱脱钩 | 0.20 | 弱脱钩 | 0.11 | 弱脱钩 | ||||||
2027 | 0.28 | 弱脱钩 | 0.19 | 弱脱钩 | 0.13 | 弱脱钩 | ||||||
2028 | 0.31 | 弱脱钩 | 0.22 | 弱脱钩 | 0.15 | 弱脱钩 | ||||||
2029 | 0.34 | 弱脱钩 | 0.24 | 弱脱钩 | 0.17 | 弱脱钩 | ||||||
2030 | 0.31 | 弱脱钩 | 0.23 | 弱脱钩 | 0.17 | 弱脱钩 |
1 | 梁福生, 曹俐, 葛智越. 空间溢出视角下绿色信贷的碳排放效应研究: 基于财政分权的调节作用[J]. 调研世界, 2022, (10): 38- 48. |
LIANG Fusheng, CAO Li, GE Zhiyue. Research on the carbon emission effect of green credit from the perspective of spatial spillover—moderating effect based on fiscal decentralization[J]. The World of Survey and Research, 2022, (10): 38- 48. | |
2 | 王成仁, 陈妍, 刘梦. 我国化石能源保供稳价形势研判及对策建议[J]. 价格理论与实践, 2023, (3): 31- 37, 64. |
WANG Chengren, CHEN Yan, LIU Meng. Analysis and suggestions on the situation of ensuring supply and stabling price of fossil energy in China[J]. Price:Theory & Practice, 2023, (3): 31- 37, 64. | |
3 | 李海龙, 唐献凤. 区块链嵌入下电力企业新型碳绩效管理体系构建[J]. 财会月刊, 2023, 44 (7): 85- 92. |
4 | 郭玲, 宁才晟, 王文烂. 中国林产品生产侧碳排放量的测度与效应分解: 基于多区域投入产出与结构分解分析模型[J]. 林业经济, 2022, 44 (5): 23- 40. |
GUO Ling, NING Caisheng, WANG Wenlan. Measurement and effect decomposition of carbon emissions on the production side of forest products in China—based on the multi-regional input-output and structural decomposition analysis model[J]. Forestry Economics, 2022, 44 (5): 23- 40. | |
5 |
LIU B Q, SHI J X, WANG H, et al. Driving factors of carbon emissions in China: a joint decomposition approach based on meta-frontier[J]. Applied Energy, 2019, 256, 113986.
DOI |
6 |
WANG Q W, CHIU Y H, CHIU C R. Driving factors behind carbon dioxide emissions in China: a modified production-theoretical decomposition analysis[J]. Energy Economics, 2015, 51, 252- 260.
DOI |
7 | 闫庆友, 王雅娴, 于振华, 等. 基于Shapley值的京津冀火电行业碳排放因素分解[J]. 生态经济, 2018, 34 (12): 29- 34. |
YAN Qingyou, WANG Yaxian, YU Zhenhua, et al. Decomposition analysis of carbon dioxide emissions from thermal electricity generation in Beijing, Tianjin and Hebei: a study based on shapley value[J]. Ecological Economy, 2018, 34 (12): 29- 34. | |
8 | OECD. Indicators to measure decoupling of environment pressure from economic growth[R]. Paris: OECD, 2002: 13-14. |
9 |
向彩红, 覃秋蓓. 基于脱钩指数与LMDI的湖南省绿色低碳发展路径研究[J]. 环境科学导刊, 2022, 41 (3): 19- 26.
DOI |
XIANG Caihong, QIN Qiubei. Study on green and low-carbon development path of Hunan province based on decoupling index and LMDI model[J]. Environmental Science Survey, 2022, 41 (3): 19- 26.
DOI |
|
10 | 侯丽朋, 王琳, 钱瑶, 等. “双碳” 目标下闽三角碳排放脱钩状态及驱动机制分析[J]. 生态学报, 2022, 42 (23): 9663- 9676. |
HOU Lipeng, WANG Lin, QIAN Yao, et al. Decoupling status and driving mechanisms of carbon emissions in the Golden Triangle of Southern Fujian under "carbon peaking and neutrality" goals[J]. Acta Ecologica Sinica, 2022, 42 (23): 9663- 9676. | |
11 | 杨英明, 孙健东. 世界主要国家能源消费碳排放脱钩及驱动因素研究[J]. 煤炭工程, 2019, 51 (7): 173- 177. |
YANG Yingming, SUN Jiandong. Carbon emission decoupling and drivers of energy consumption in major countries[J]. Coal Engineering, 2019, 51 (7): 173- 177. | |
12 |
DONG J, LI C, WANG Q. Decomposition of carbon emission and its decoupling analysis and prediction with economic development: a case study of industrial sectors in Henan province[J]. Journal of Cleaner Production, 2021, 321, 129019.
DOI |
13 | 曲健莹, 李科. 工业增长与二氧化碳排放“脱钩” 的测算与分析[J]. 西安交通大学学报(社会科学版), 2019, 39 (5): 92- 104. |
QU Jianying, LI Ke. Measurement and analysis of "decoupling" between industrial growth and carbon dioxide emissions in China[J]. Journal of Xi'an Jiaotong University (Social Sciences), 2019, 39 (5): 92- 104. | |
14 | 李健, 王尧, 王颖. 天津市碳排放脱钩态势及碳减排潜力分析: 基于2007—2016年的面板数据[J]. 生态经济, 2019, 35 (4): 26- 32. |
LI Jian, WANG Yao, WANG Ying. Tianjin carbon emissions decoupling analysis and carbon emission reduction potential: based on panel data from 2007 to 2016[J]. Ecological Economy, 2019, 35 (4): 26- 32. | |
15 | 陈赟, 沈浩, 王晓慧, 等. 基于Mann-Kendall趋势检验的城市能源碳达峰评估方法[J]. 上海交通大学学报, 2023, 57 (7): 928- 938. |
CHEN Yun, SHEN Hao, WANG Xiaohui, et al. Assessment method for urban energy carbon emission peak based on Mann-Kendall trend test[J]. Journal of Shanghai Jiao Tong University, 2023, 57 (7): 928- 938. | |
16 | 玉琦彤. 中国电力行业碳排放脱钩效应情景模拟[J]. 环境科学与技术, 2021, 44 (6): 194- 200. |
YU Qitong. Scenario simulation of decoupling effect of carbon emission in China's power industry[J]. Environmental Science & Technology, 2021, 44 (6): 194- 200. | |
17 | 廖祖君, 张剑宇, 陈诗薇. 碳排放影响因素及达峰路径研究: 基于四川省的分析[J]. 软科学, 2023, 37 (9): 95- 101. |
LIAO Zujun, ZHANG Jianyu, CHEN Shiwei. Factors influencing carbon emission and carbon peak reaching pathways: evidence from Sichuan province[J]. Soft Science, 2023, 37 (9): 95- 101. | |
18 | 马宇恒. 东北地区2030年碳排放达峰路径研究[D]. 长春: 吉林大学, 2018. |
MA Yuheng. Study on the peak path of carbon emission in Northeast China in 2030[D]. Changchun: Jilin University, 2018. | |
19 | 马丁, 陈文颖. 中国2030年碳排放峰值水平及达峰路径研究[J]. 中国人口·资源与环境, 2016, 26 (增刊1): 1- 4. |
20 |
ANG B W. Decomposition analysis for policymaking in energy: which is the preferred method?[J]. Energy policy, 2004, 32 (9): 1131- 1139.
DOI |
21 | 杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50 (13): 126- 133. |
YANG Haizhu, TIAN Fuming, ZHANG Peng, et al. Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power System Protection and Control, 2022, 50 (13): 126- 133. | |
22 | 于霄宇, 纪正森, 嵇灵, 等. 双碳目标下我国电动汽车碳减排贡献潜力分析[J]. 智慧电力, 2024, 52 (2): 25- 31, 39. |
YU Xiaoyu, JI Zhengsen, JI Ling, et al. Analysis on carbon emission reduction potential of electric vehicles in China under goal of carbon neutrality and carbon peaking[J]. Smart Power, 2024, 52 (2): 25- 31, 39. | |
23 |
张浩然, 汪晓东. 回归最小二乘支持向量机的增量和在线式学习算法[J]. 计算机学报, 2006, 29 (3): 400- 406.
DOI |
ZHANG Haoran, WANG Xiaodong. Incremental and online learning algorithm for regression least squares support vector machine[J]. Chinese Journal of Computers, 2006, 29 (3): 400- 406.
DOI |
|
24 |
何忠华, 张涛, 胡娱欧, 等. 考虑大气污染防治措施影响的短期电力负荷预测模型研究[J]. 智慧电力, 2019, 47 (5): 1- 9.
DOI |
HE Zhonghua, ZHANG Tao, HU Yuou, et al. Short-term electric load forecasting model considering the influence of air pollution prevention and control policy[J]. Smart Power, 2019, 47 (5): 1- 9.
DOI |
|
25 | 王凤婷, 方恺, 于畅. 京津冀产业能源碳排放与经济增长脱钩弹性及驱动因素: 基于Tapio脱钩和LMDI模型的实证[J]. 工业技术经济, 2019, 38 (8): 32- 40. |
WANG Fengting, FANG Kai, YU Chang. Decoupling between industrial energy-related carbon emissions and economic growth and its driving factors in Beijing, Tianjin and Hebei urban agglomeration—empirical study based on tapio decoupling and LMDI model[J]. Journal of Industrial Technological Economics, 2019, 38 (8): 32- 40. | |
26 | The United Nations Economic and Social Affairs. World urbanization outlook report [EB/OL]. (2014-07-20)[2022-04-25].https://www.un.org/development/desa/zh/news/population/world-urbanization-prospects-2014.html. |
27 | 廖华, 向福洲. 中国“十四五” 能源需求预测与展望[J]. 北京理工大学学报(社会科学版), 2021, 23 (2): 1- 8. |
LIAO Hua, XIANG Fuzhou. Forecast and prospect of energy demand in china's "14th five-year" plan period[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23 (2): 1- 8. | |
28 |
李平, 娄峰, 王宏伟. 2016—2035年中国经济总量及其结构分析预测[J]. 中国工程科学, 2017, 19 (1): 13- 20.
DOI |
LI Ping, LOU Feng, WANG Hongwei. Analysis and forecast of China's total economy and its structure from 2016–2035[J]. Strategic Study of CAE, 2017, 19 (1): 13- 20.
DOI |
|
29 |
国务院发展研究中心课题组. 认识人口基本演变规律 促进我国人口长期均衡发展[J]. 管理世界, 2022, 38 (1): 1- 19, 34, 20.
DOI |
Group of the Development Research Center of the State Council. Understand the basic laws of population evolution and promote the long-term balanced development of China's population[J]. Journal of Management World, 2022, 38 (1): 1- 19, 34, 20.
DOI |
[1] | 周原冰, 张士宁, 侯方心, 任宏涛, 徐鹏飞. 电力行业碳达峰及促进全社会碳减排影响分析[J]. 中国电力, 2024, 57(9): 1-9. |
[2] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[3] | 周德才, 陈金金, 刘波. 中国电力景气指数的混频非对称测度[J]. 中国电力, 2022, 55(6): 172-185. |
[4] | 石庆松, 秦蕊, 肖鹏, 欧阳丽炜, 熊刚, 张宏鑫, 王飞跃. 基于联盟链的电力物资采购数据共享激励机制[J]. 中国电力, 2022, 55(3): 87-96. |
[5] | 吴智泉. 实施非水可再生能源配额情景下的发电行业CO2排放预测[J]. 中国电力, 2018, 51(5): 141-146. |
[6] | 刘彤, 张慧聪. 清洁燃煤发电技术的多属性综合评估方法研究[J]. 中国电力, 2017, 50(10): 166-170. |
[7] | 朱晓燕,方泉. 美国电力行业信息安全运作机制和策略分析[J]. 中国电力, 2015, 48(5): 81-88. |
[8] | 范长健, 李媛, 海热提·吐尔逊, 王寿鹤. 电力行业SO2去除量驱动因素分析[J]. 中国电力, 2014, 47(7): 144-149. |
[9] | 王敬敏, 薛雨田. 基于数据包络模型的电力行业碳排放权配额初始分配效率研究[J]. 中国电力, 2013, 46(10): 146-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||