中国电力 ›› 2023, Vol. 56 ›› Issue (12): 69-79.DOI: 10.11930/j.issn.1004-9649.202307070

• 分布式智能电网的规划、运行和电力交易 • 上一篇    下一篇

考虑资源储备度的主动配电网多目标集群划分与电压控制方法

王晶1(), 袁懿1(), 邵尹池2, 张晋奇1, 丁然3, 巩彦江4   

  1. 1. 清华四川能源互联网研究院,四川 成都 610042
    2. 国网冀北电力有限公司电力科学研究院,北京 100045
    3. 国网冀北电力有限公司,北京 100054
    4. 国网冀北电力有限公司唐山供电公司,河北 唐山 063000
  • 收稿日期:2023-07-19 出版日期:2023-12-28 发布日期:2023-12-28
  • 作者简介:王晶(1989—),女,通信作者,高级工程师,硕士,从事新能源规划、调度与运行控制研究,E-mail: wangjingepri@163.com
    袁懿(2001—),男,硕士研究生,从事电力系统规划、电力电量平衡及其优化研究,E-mail: yy0473574@gmail.com
  • 基金资助:
    国家电网有限公司科技项目(高比例分布式光伏接入县域电网协同优化控制技术研究,52018K220015)。

Multi-Objective Cluster Classification and Voltage Control Approach for Active Distribution Network Considering Resource Reserve Degree

Jing WANG1(), Yi YUAN1(), Yinchi SHAO2, Jinqi ZHANG1, Ran DING3, Yanjiang GONG4   

  1. 1. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610042, China
    2. Electric Power Research Institute, State Grid Jibei Electric Power Co., Ltd., Beijing 100045, China
    3. State Grid Jibei Electric Power Co., Ltd, Beijing 100054, China
    4. Tangshan Power Supply Company of State Grid Jibei Electric Power Company Limited, Tangshan 063000, China
  • Received:2023-07-19 Online:2023-12-28 Published:2023-12-28
  • Supported by:
    This work is supported by Science and Project of SGCC (Research on Synergistic Optimization and Control Technology for High Proportion of Distributed Photovoltaic Integration into County-level Power Grids, No.52018K220015).

摘要:

针对分布式光伏高渗透率接入配电网后引起的节点电压越限问题,提出一种考虑资源储备度的主动配电网多目标集群划分与电压控制方法。首先,考虑分布式光伏发电接入时自身调节能力对集群耦合关系及整体控制能力的影响,建立考虑资源储备度的多维集群划分指标。然后,使用K-means聚类算法对离散粒子群算法(discrete particle swarm optimization,DPSO)进行改进,将集群划分转换为优化求解问题。接着,建立主动配电网集群电压控制模型,以主导节点的无功/有功功率为控制对象,确定分布式光伏的时序动作、功率;最后,以某整县屋顶分布式光伏开发试点内的电网为仿真算例,分析不同方案下电压的控制效果、系统网损和光伏利用率等,验证了本文所提电压控制方法的正确性和有效性。

关键词: 分布式光伏, 资源储备度, 集群划分, 电压控制, K-means聚类, 离散粒子群算法

Abstract:

A multi-objective cluster classification and voltage control approach for an active distribution network considering resource reserve degree is proposed to solve the problem that the node voltage exceeds the limit after the high penetration rate of distributed photovoltaic (PV) power generation is connected to the distribution network. Firstly, by considering the influence of its own regulation ability on cluster coupling relationship and global control ability when distributed PV power generation is connected, a multi-dimensional cluster classification indicator considering resource reserve degree is established. Then, the K-means clustering algorithm is used to improve the discrete particle swarm optimization (DPSO) algorithm to convert the cluster classification into an optimization solution problem. Then, a voltage control model of the active distribution network cluster is built. With the reactive/active power of the dominant node as the control object, the sequential action and power of distributed PV power generation are determined. Finally, the power grid of a rooftop distributed PV development pilot in a county is taken as a simulation example, and the voltage control effect, system network loss, and PV utilization rate under different schemes are analyzed. The correctness and effectiveness of the voltage control approach proposed in this paper are verified.

Key words: distributed photovoltaic, resource reserve degree, cluster classification, voltage control, K-means clustering, discrete particle swarm algorithm