[1] 谭鸣骢, 王玲玲, 蒋传文, 等. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32–44 TAN Mingcong, WANG Lingling, JIANG Chuanwen, et al. Bi-level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power, 2022, 55(10): 32–44 [2] 金国彬, 刘玉龙, 李国庆, 等. 考虑可靠性的交直流混合配电网网架与分布式电源协同优化规划[J]. 电力系统保护与控制, 2022, 50(22): 59–70 JIN Guobin, LIU Yulong, LI Guoqing, et al. Collaborative optimization planning of an AC/DC hybrid distribution network frame and distributed power generation considering reliability[J]. Power System Protection and Control, 2022, 50(22): 59–70 [3] ZHOU X, ZOU S L, WANG P, et al. ADMM-based coordination of electric vehicles in constrained distribution networks considering fast charging and degradation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 565–578. [4] MAO M M, XU J J, WU Z J, et al. A multiarea state estimation for distribution networks under mixed measurement environment[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 3620–3629. [5] 翁嘉明, 刘东, 安宇, 等. 馈线功率控制下的主动配电网信息物理风险演化分析[J]. 中国电力, 2021, 54(3): 12–22 WENG Jiaming, LIU Dong, AN Yu, et al. Cyber-physical risk evolution analysis of active distribution network under feeder control error[J]. Electric Power, 2021, 54(3): 12–22 [6] 叶宇剑, 袁泉, 汤奕. 面向双碳目标的交通网-电网耦合网络中电动汽车负荷低碳优化方法[J]. 中国电力, 2023, 56(5): 72–79 YE Yujian, YUAN Quan, TANG Yi. Electric vehicle charging demand low carbon optimization in traffic-grid coupling networks towards“dual carbon”Goal[J]. Electric Power, 2023, 56(5): 72–79 [7] 陈亚鹏, 曲睿, 贾璐瑞, 等. 面向区域能量调控的信息时效性保障与数据价值提升策略[J/OL]. 中国电机工程学报, 2023: 1–13.[2023-09-12]. DOI: 10.13334/j.0258-8013.pcsee.222841. CHEN Yapeng, QU Rui, JIA Lurui, et al. Information timeliness guarantee and data value enhancement strategy for regional energy regulation[J/OL]. Proceedings of the CSEE, 2023: 1–13. [2023-09-12]. DOI: 10.13334/j.0258-8013.pcsee.222841. [8] 孙强, 孙志凰, 潘杭萍, 等. 考虑多种储能的数据中心综合能源系统配置优化[J]. 中国电力, 2022, 55(9): 1–7 SUN Qiang, SUN Zhihuang, PAN Hangping, et al. Configuration optimization of integrated energy system for data center considering multiple energy storage facilities[J]. Electric Power, 2022, 55(9): 1–7 [9] GUIM F, METSCH T, MOUSTAFA H, et al. Autonomous lifecycle management for resource-efficient workload orchestration for green edge computing[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 571–582. [10] MA L L, YI S H, CARTER N, et al. Efficient live migration of edge services leveraging container layered storage[J]. IEEE Transactions on Mobile Computing, 2019, 18(9): 2020–2033. [11] ALEYADEH S, MOUBAYED A, HEIDARI P, et al. Optimal container migration/Re-instantiation in hybrid computing environments[J]. IEEE Open Journal of the Communications Society, 2022, 3: 15–30. [12] LV L, ZHANG Y C, LI Y S, et al. Communication-aware container placement and reassignment in large-scale Internet data centers[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 540–555. [13] LONG S Q, WEN W, LI Z T, et al. A global cost-aware container scheduling strategy in cloud data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(11): 2752–2766. [14] RANJAN R, THAKUR I S, AUJLA G S, et al. Energy-efficient workflow scheduling using container-based virtualization in software-defined data centers[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7646–7657. [15] KAEWKASI C, CHUENMUNEEWONG K. Improvement of container scheduling for Docker using ant colony optimization[C]//2017 9th International Conference on Knowledge and Smart Technology (KST). Chonburi, Thailand. IEEE, 2017: 254–259. [16] 罗艺, 江凌云. 移动边缘计算环境下容器实时迁移方法[J]. 通信技术, 2022, 55(5): 599–604 LUO Yi, JIANG Lingyun. A live migration method for containers in mobile edge computing environments[J]. Communications Technology, 2022, 55(5): 599–604 [17] SUN Z J, YANG H, LI C, et al. Cloud-edge collaboration in industrial Internet of Things: a joint offloading scheme based on resource prediction[J]. IEEE Internet of Things Journal, 2022, 9(18): 17014–17025. [18] 王小雪, 王晓锋, 刘渊. 基于OpenStack的高资源利用率Docker调度模型[J]. 计算机工程, 2022, 48(9): 171–179, 196 WANG Xiaoxue, WANG Xiaofeng, LIU Yuan. OpenStack-based Docker scheduling model with high resource utilization[J]. Computer Engineering, 2022, 48(9): 171–179, 196 [19] 施超, 谢在鹏, 柳晗, 等. 基于稳定匹配的容器部署策略的优化[J]. 计算机科学, 2018, 45(4): 131–136 SHI Chao, XIE Zaipeng, LIU Han, et al. Optimization of container deployment strategy based on stable matching[J]. Computer Science, 2018, 45(4): 131–136 [20] SWAIN C, SAHOO M N, SATPATHY A, et al. METO: matching-theory-based efficient task offloading in IoT-fog interconnection networks[J]. IEEE Internet of Things Journal, 2021, 8(16): 12705–12715. [21] 周振宇, 王曌, 廖海君, 等. 电力物联网5G云–边–端协同框架与资源调度方法[J]. 电网技术, 2022, 46(5): 1641–1651 ZHOU Zhenyu, WANG Zhao, LIAO Haijun, et al. 5G cloud-edge-end collaboration framework and resource scheduling method in power Internet of Things[J]. Power System Technology, 2022, 46(5): 1641–1651 [22] CHOUDHURY S, MAHESHWARI S, SESKAR I, et al. ShareOn: shared resource dynamic container migration framework for real-time support in mobile edge clouds[J]. IEEE Access, 2022, 10: 66045–66060. [23] LIAO H J, ZHOU Z Y, ZHAO X W, et al. Learning-based context-aware resource allocation for edge-computing-empowered industrial IoT[J]. IEEE Internet of Things Journal, 2020, 7(5): 4260–4277. [24] ZHANG H Q, XIAO Y, BU S R, et al. Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining stackelberg game and matching[J]. IEEE Internet of Things Journal, 2017, 4(5): 1204–1215. [25] FAN Y Q, WANG L F, WU W L, et al. Cloud/edge computing resource allocation and pricing for mobile blockchain: an iterative greedy and search approach[J]. IEEE Transactions on Computational Social Systems, 2021, 8(2): 451–463.
|