[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893–1904, 2205 ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893–1904, 2205 [2] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1–18, 369 LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1–18, 369 [3] HIRSCH A, PARAG Y, GUERRERO J. Microgrids: a review of technologies, key drivers, and outstanding issues[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 402–411. [4] 周姝灿, 卢洵, 刘新苗, 等. 大容量锂电池储能电站的等值仿真方法[J]. 南方电网技术, 2022, 16(4): 30–38 ZHOU Shucan, LU Xun, LIU Xinmiao, et al. Equivalent simulation method for large capacity lithium battery energy storage power station[J]. Southern Power System Technology, 2022, 16(4): 30–38 [5] XIONG R, LI L L, TIAN J P. Towards a smarter battery management system: a critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18–29. [6] 夏向阳, 邓子豪, 张嘉诚, 等. 基于动力锂离子电池健康状态的全寿命周期优化充电策略[J]. 电力科学与技术学报, 2022, 37(6): 17–24 XIA Xiangyang, DENG Zihao, ZHANG Jiacheng, et al. Lifecycle optimal charging strategy based on the SOH of power lithiumion battery[J]. Journal of Electric Power Science and Technology, 2022, 37(6): 17–24 [7] 王波, 陈东东, 张锦霞, 等. 基于时空分布映射的大规模电池健康状态研究[J]. 智慧电力, 2022, 50(6): 85–91 WANG Bo, CHEN Dongdong, ZHANG Jinxia, et al. Large-scale battery health state prediction based on spatio-temporal distribution mapping[J]. Smart Power, 2022, 50(6): 85–91 [8] 晋殿卫, 顾则宇, 张志宏. 锂电池健康度和剩余寿命预测算法研究[J]. 电力系统保护与控制, 2023, 51(1): 122–130 JIN Dianwei, GU Zeyu, ZHANG Zhihong. Lithium battery health degree and residual life prediction algorithm[J]. Power System Protection and Control, 2023, 51(1): 122–130 [9] 刘文军, 欧名勇, 夏向阳, 等. 基于欧姆内阻压降的电池簇不一致性在线监测方法研究[J]. 中国电力, 2022, 55(8): 87–95 LIU Wenjun, OU Mingyong, XIA Xiangyang, et al. Research on online monitoring method of battery cluster inconsistency based on ohmic internal resistance voltage drop[J]. Electric Power, 2022, 55(8): 87–95 [10] MIYATAKE S, SUSUKI Y, HIKIHARA T, et al. Discharge characteristics of multicell lithium-ion battery with nonuniform cells[J]. Journal of Power Sources, 2013, 241: 736–743. [11] KIM J, SHIN J, JEON C, et al. High accuracy state-of-charge estimation of li-ion battery pack based on screening process[C]//2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Fort Worth, TX, USA. IEEE, 2011: 1984–1991. [12] 蔡艳平, 陈万, 苏延召, 等. 锂离子电池剩余寿命预测方法综述[J]. 电源技术, 2021, 45(5): 678–682 CAI Yanping, CHEN Wan, SU Yanzhao, et al. Review of remaining useful life prediction for lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(5): 678–682 [13] REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: a deep learning approach[J]. IEEE Access, 2018, 6: 50587–50598. [14] ZHANG H, MIAO Q, ZHANG X, et al. An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288–298. [15] SUN Y Q, HAO X L, PECHT M, et al. Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator[J]. Microelectronics Reliability, 2018, 88/89/90: 1189–1194. [16] XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811–820. [17] GAO Y, JIANG J C, ZHANG C P, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103–114. [18] 曾文文. 锂离子电池健康状态评估及剩余寿命预测方法[D]. 淮南: 安徽理工大学, 2019. ZENG Wenwen. State-of-health estimation and remaining useful life prediction method of lithium-ion battery[D]. Huainan: Anhui University of Science & Technology, 2019. [19] 冯海林, 张翾. 基于新健康因子的锂电池健康状态估计和剩余寿命预测[J]. 南京大学学报(自然科学), 2021, 57(4): 660–670 FENG Hailin, ZHANG Xuan. State of health estimation and remaining using life prediction of lithium-ion batteries based on new health indicators[J]. Journal of Nanjing University (Natural Science), 2021, 57(4): 660–670 [20] ZHANG S, GUO X, ZHANG X. Modeling of back-propagation neural network based state-of-charge estimation for lithium-ion batteries with consideration of capacity attenuation[J]. Advances in Electrical and Computer Engineering, 2019, 19(3): 3–10. [21] 韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038–4044 WEI Haiyan, CHEN Xiaojie, LÜ Zhiqiang, et al. Online estimation of lithium-ion battery state of health using grey neural network[J]. Power System Technology, 2017, 41(12): 4038–4044 [22] 程泽, 杨磊, 孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报, 2018, 38(8): 2384–2393, 2548 CHENG Ze, YANG Lei, SUN Xingmian. State of charge and state of health estimation of Li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE, 2018, 38(8): 2384–2393, 2548 [23] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105–111, 325 ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105–111, 325 [24] 樊亚翔, 肖飞, 许杰, 等. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16): 5661–5670 FAN Yaxiang, XIAO Fei, XU Jie, et al. State of health estimation of lithium-ion batteries based on the partial charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661–5670 [25] 刘大同, 宋宇晨, 武巍, 等. 锂离子电池组健康状态估计综述[J]. 仪器仪表学报, 2020, 41(11): 1–18 LIU Datong, SONG Yuchen, WU Wei, et al. Review of state of health estimation for lithium-ion battery pack[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 1–18 [26] 郝雪玲. 锂离子电池健康状态多指标融合和剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. HAO Xueling. Study on multi-health indicators fusion and remaining useful life prediction for lithium-ion batteries[D]. Harbin: Harbin University of Science and Technology, 2019. [27] 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145–8154, 8251 YAN Gangui, LI Hongbo, DUAN Shuangming, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145–8154, 8251 [28] 朱志祥. 基于内阻模型的锂电池健康状态评价[D]. 绵阳: 西南科技大学, 2020 ZHU Zhixiang. Evaluation of health status of lithium battery based on internal resistance mode[D]. Mianyang: Southwest University of Science and Technology, 2020. [29] 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73–86, 95 LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55(8): 73–86, 95
|