中国电力 ›› 2023, Vol. 56 ›› Issue (5): 137-152.DOI: 10.11930/j.issn.1004-9649.202210121
罗皓泽1, 陈忠2, 杨为2, 谢佳3, 胡迪2, 官玮平2
收稿日期:
2022-10-28
修回日期:
2023-01-10
出版日期:
2023-05-28
发布日期:
2023-05-27
作者简介:
罗皓泽(1986-),男,博士,研究员,从事大功率电力电子器件技术及其应用研究,E-mail:haozeluo@zju.edu.cn;陈忠(1983-),男,通信作者,博士,高级工程师,从事高压直流输电、直流电源、电力储能研究,E-mail:chenzh06@163.com
基金资助:
LUO Haoze1, CHEN Zhong2, YANG Wei2, XIE Jia3, HU Di2, GUAN Weiping2
Received:
2022-10-28
Revised:
2023-01-10
Online:
2023-05-28
Published:
2023-05-27
Supported by:
摘要: 高压大容量压接式绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)器件和晶闸管器件是高压直流输电工程中的核心器件,对能源的高效利用具有重要意义。IGBT和晶闸管等器件可靠性已成为电工装备乃至整个电力系统能够稳定可靠运行的关键问题。首先,从压接式器件传统封装结构入手,介绍了压接式器件的弹簧式多芯片封装和凸台式多芯片/单芯片封装,对比了3种封装结构的性能。其次,阐述了压接式器件封装级失效模式与机理,结果表明热膨胀系数不匹配是封装级失效的最主要原因。同时,也对IGBT和晶闸管芯片级失效做了梳理,结果表明电气过应力是芯片级失效的主要原因。然后,简单阐述了压接式器件的新型封装结构与技术。最后,展望了压接式器件未来可能的研究重点。
罗皓泽, 陈忠, 杨为, 谢佳, 胡迪, 官玮平. 压接式IGBT和晶闸管器件失效模式与机理研究综述[J]. 中国电力, 2023, 56(5): 137-152.
LUO Haoze, CHEN Zhong, YANG Wei, XIE Jia, HU Di, GUAN Weiping. Review on Failure Mode and Mechanism of Press-Pack IGBT and Thyristor Devices[J]. Electric Power, 2023, 56(5): 137-152.
[1] YANG S Y, BRYANT A, MAWBY P, et al. An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441–1451. [2] 刘国友, 黄建伟, 舒丽辉, 等. 6英寸高压晶闸管的研制[J]. 电网技术, 2007, 31(2): 90–92 LIU Guoyou, HUANG Jianwei, SHU Lihui, et al. Development of 6-inch high voltage thyristor[J]. Power System Technology, 2007, 31(2): 90–92 [3] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [4] 郑重, 杜赫, 邱馨仪, 等. 高压直流断路器用压接式IGBT芯片封装设计[J]. 智慧电力, 2018, 46(10): 55–62 ZHENG Zhong, DU He, QIU Xinyi, et al. Packing design for press pack IGBT used in HVDC breaker[J]. Smart Power, 2018, 46(10): 55–62 [5] ABUELNAGA A, NARIMANI M, BAHMAN A S. A review on IGBT module failure modes and lifetime testing[J]. IEEE Access, 2021, 9: 9643–9663. [6] MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665–671. [7] SMET V, FOREST F, HUSELSTEIN J J, et al. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4931–4941. [8] 邓二平, 张经纬, 李尧圣, 等. 焊接式IGBT模块与压接型IGBT器件可靠性差异分析[J]. 半导体技术, 2016, 41(11): 801–810,815 DENG Erping, ZHANG Jingwei, LI Yaosheng, et al. Analysis of the reliability difference between IGBT modules and press-pack IGBTs[J]. Semiconductor Technology, 2016, 41(11): 801–810,815 [9] NGWASHI D K, PHUNG L V. Recent review on failures in silicon carbide power MOSFETs[J]. Microelectronics Reliability, 2021, 123: 6. [10] 邓二平. 压接型IGBT器件内部电—热—力多物理场耦合模型研究[D]. 北京: 华北电力大学, 2018. DENG Erping. Modelling the electro-thermo-mechanical multi-physics coupling model for press pack IGBTs[D]. Beijing: North China Electric Power University, 2018. [11] 唐新灵, 张朋, 陈中圆, 等. 高压大功率压接型IGBT器件封装技术研究综述[J]. 中国电机工程学报, 2019, 39(12): 3622–3638 TANG Xinling, ZHANG Peng, CHEN Zhongyuan, et al. Review of high voltage high power press pack IGBT package technology[J]. Proceedings of the CSEE, 2019, 39(12): 3622–3638 [12] 周文鹏, 曾嵘, 赵彪, 等. 大容量全控型压接式IGBT和IGCT器件对比分析: 原理、结构、特性和应用[J]. 中国电机工程学报, 2022, 42(8): 2940–2957 ZHOU Wenpeng, ZENG Rong, ZHAO Biao, et al. Comparative analysis of large-capacity fully-controlled press-pack IGBT and IGCT: principle, structure, characteristics and application[J]. Proceedings of the CSEE, 2022, 42(8): 2940–2957 [13] 唐新灵, 林仲康, 张西子, 等. 大功率压接型IGBT器件中的机械应力研究[J]. 中国电力, 2020, 53(12): 62–74 TANG Xinling, LIN Zhongkang, ZHANG Xizi, et al. Mechanical stress analysis in high power press pack IGBT[J]. Electric Power, 2020, 53(12): 62–74 [14] 王愈轩. 压接式IGBT封装技术研究[D]. 北京: 华北电力大学, 2017. WANG Yuxuan. Research on the packaging technology of press-pack IGBT[D]. Beijing: North China Electric Power University, 2017. [15] 李杰, 庞磊, 陈炫宇, 等. 稳态电压加速应力下晶闸管特征参数退化规律及失效机理分析[J]. 电网技术, 2021, 45(12): 4941–4948 LI Jie, PANG Lei, CHEN Xuanyu, et al. Degradation law and failure mechanism analyses of thyristor characteristic parameters under steady state voltage[J]. Power System Technology, 2021, 45(12): 4941–4948 [16] COVA P, NICOLETTO G, PIRONDI A. Power cycling on press-pack IGBTs: measurements and thermomechanical simulation[J]. Microelectronics Reliability, 1999, 39(6/7): 1165–1170. [17] 李辉, 刘人宽, 王晓, 等. 压接型IGBT器件封装退化监测方法综述[J]. 电工技术学报, 2021, 36(12): 2505–2521 LI Hui, LIU Renkuan, WANG Xiao, et al. Review on package degradation monitoring methods of press-pack IGBT modules[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2505–2521 [18] POLLER T, BASLER T, HERNES M, et al. Mechanical analysis of press-pack IGBTs[J]. Microelectronics Reliability, 2012, 52(9/10): 2397–2402. [19] 姚然. 压接型IGBT器件失效演化模拟及可靠性评估研究[D]. 重庆: 重庆大学, 2020. YAO Ran. Investigation of failure evolution simulation and reliability evaluation of press pack IGBT device[D]. Chongqing: Chongqing University, 2020. [20] BHAGATH S, PECHT M G. Modeling the effects of mixed flowing gas (MFG) corrosion and stress relaxation on contact interface resistance[J]. Journal of Electronic Packaging, 1993, 115(4): 404–409. [21] TINSCHERT L, ÅRDAL A R, POLLER T, et al. Possible failure modes in press-pack IGBTs[J]. Microelectronics Reliability, 2015, 55(6): 903–911. [22] 刘国友, 窦泽春, 罗海辉, 等. 高功率密度3600 A/4500 V压接型IGBT研制[J]. 中国电机工程学报, 2018, 38(16): 4855–4862, 4991 LIU Guoyou, DOU Zechun, LUO Haihui, et al. Development of high power density 3600 A/4500 V press-pack IGBT[J]. Proceedings of the CSEE, 2018, 38(16): 4855–4862, 4991 [23] 窦泽春, 刘国友, 陈俊, 等. 大功率压接式IGBT器件设计与关键技术[J]. 大功率变流技术, 2016(2): 21–25, 34 DOU Zechun, LIU Guoyou, CHEN Jun, et al. Design and key technologies of high-power press-pack IGBT device[J]. High Power Converter Technology, 2016(2): 21–25, 34 [24] GUNTURI S, SCHNEIDER D. On the operation of a press pack IGBT module under short circuit conditions[J]. IEEE Transactions on Advanced Packaging, 2006, 29(3): 433–440. [25] WU W C, HELD M, JACOB P, et al. Investigation on the long term reliability of power IGBT modules[C]//Proceedings of International Symposium on Power Semiconductor Devices and IC's: ISPSD'95. Yokohama, Japan. IEEE, 2002: 443–448. [26] 胡震. 功率器件的状态监测和可靠性研究[D]. 天津: 天津大学, 2019. HU Zhen. Condition monitoring and reliability study of power devices[D]. Tianjin: Tianjin University, 2019. [27] 王希平, 丁祥宽, 姚芳, 等. IGBT模块失效机理及状态监测研究综述[J]. 中国电力, 2019, 52(9): 61–72 WANG Xiping, DING Xiangkuan, YAO Fang, et al. Review of failure mechanism and state monitoring technology for IGBT modules[J]. Electric Power, 2019, 52(9): 61–72 [28] 郑夏晖. 直流断路器用压接型IGBT器件失效模式研究[D]. 北京: 华北电力大学, 2021. ZHENG Xiahui. Research on failure modes of press-pack IGBT devices used in DCCB[D]. Beijing: North China Electric Power University, 2021. [29] FLEISCHER A S, JOHNSON B C, CHANG L H. The effect of Die attach voiding on the thermal resistance of chip level packages[C]//Proceedings of ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated With the ASME 2005 Heat Transfer Summer Conference, San Francisco, California, USA. 2009: 299–304. [30] KATSIS D C, VANWYK J D. A thermal, mechanical, and electrical study of voiding in the solder Die-attach of power MOSFETs[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 127–136. [31] BOUARROUDJ-BERKANI M, LEFEBVRE S, KHATIR Z, et al. Investigations on ageing of IGBT transistors under repetitive short-circuits operations[C]. //Proceedings of International Conference & Exhibition on Power Electronics, Shanghai, China, 2009: 237–242. [32] 尹志豪, 余典儒, 朱家峰, 等. IGBT功率模块封装失效机理及监测方法综述[J]. 电工电能新技术, 2022, 41(8): 51–70 YIN Zhihao, YU Dianru, ZHU Jiafeng, et al. Review of IGBT power module packaging failure mechanism and monitoring methods[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(8): 51–70 [33] 樊鑫茹. 基于双脉冲测试的IGBT功率模块失效分析[D]. 西安: 西安电子科技大学, 2021. FAN Xinru. Failure analysis of IGBT power module based on double pulse test[D]. Xi'an: Xidian University, 2021. [34] 张雪垠. 基于FEM的功率IGBT模块功率循环可靠性研究[D]. 上海: 上海交通大学, 2014. ZHANG Xueyin. Research on IGBT module reliability based on fem method[D]. Shanghai: Shanghai Jiao Tong University, 2014. [35] PAULSON W M, KIRK R W. The effects of phosphorus-doped passivation glass on the corrosion of aluminum[C]//12 th International Reliability Physics Symposium. Las Vegas, NV, USA. IEEE, 2007: 172–179. [36] PYUN S I, MOON S M. Corrosion mechanism of pure aluminium in aqueous alkaline solution[J]. Journal of Solid State Electrochemistry, 2000, 4(5): 267–272. [37] ZORN C, KAMINSKI N. Temperature-humidity-bias testing on insulated-gate bipolartransistor modules - failure modes and acceleration due to high voltage[J]. IET Power Electronics, 2015, 8(12): 2329–2335. [38] 王延浩, 邓二平, 黄永章. 功率器件高温高湿高压反偏测试研究综述[J]. 中国电力, 2020, 53(12): 18–29 WANG Yanhao, DENG Erping, HUANG Yongzhang. A review of reverse bias test for power device in high temperature, high humidity and high voltage conditions[J]. Electric Power, 2020, 53(12): 18–29 [39] 冯静波, 吕铮, 邓卫华, 等. 柔性直流换流阀IGBT过流失效研究[J]. 中国电力, 2021, 54(1): 70–77 FENG Jingbo, LV Zheng, DENG Weihua, et al. Study on the IGBT overcurrent failure of VSC-HVDC converter valve[J]. Electric Power, 2021, 54(1): 70–77 [40] PU S, YANG F, TEJA VANKAYALAPATI B, et al. Aging mechanisms and accelerated lifetime tests for SiC MOSFETs: an overview[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(1): 1232–1254. [41] 汪波, 胡安, 唐勇, 等. IGBT电压击穿特性分析[J]. 电工技术学报, 2011, 26(8): 145–150 WANG Bo, HU An, TANG Yong, et al. Analysis of voltage breakdown characteristic of IGBT[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 145–150 [42] 遆凯旋. 压接式IGBT失效短路特性研究[D]. 北京: 华北电力大学, 2018. TI Kaixuan. Research on short circuit failure mode characteristics of press-pack IGBTs[D]. Beijing: North China Electric Power University, 2018. [43] 康建龙, 辛振, 陈建良, 等. SiC MOSFET短路失效与退化机理研究综述及展望[J]. 中国电机工程学报, 2021, 41(3): 1069–1084 KANG Jianlong, XIN Zhen, CHEN Jianliang, et al. Review and prospect of short-circuit failure and degradation mechanism of SiC MOSFET[J]. Proceedings of the CSEE, 2021, 41(3): 1069–1084 [44] 马晋, 王富珍, 王彩琳. IGBT失效机理与特征分析[J]. 电力电子技术, 2014, 48(3): 71–73, 76 MA Jin, WANG Fuzhen, WANG Cailin. Analysis of failure mechanism and features of IGBT[J]. Power Electronics, 2014, 48(3): 71–73, 76 [45] 鲁光祝. IGBT功率模块寿命预测技术研究[D]. 重庆: 重庆大学, 2012. LU Guangzhu. A study on the lifetime prediction technique for the IGBT power module[D]. Chongqing: Chongqing University, 2012. [46] GUTH K, SIEPE D, GOERLICH J, et al. New assembly and interconnects beyond sintering methods[C]//International Exhibition and Conference for Power Electronics, Intelligent Motion and Power Quality (PCIM Europe 2010), Nuremburg, Germany, 2010: 219–224. [47] LORENZ L. Semiconductor power devices: physics, characteristics, reliability[book review[J]. IEEE Power Electronics Magazine, 2019, 6(1): 86–87. [48] 贺之渊, 汤广福, 邓占锋, 等. TSC高压晶闸管阀过电流失效机理[J]. 电力系统自动化, 2007, 31(13): 23–28 HE Zhiyuan, TANG Guangfu, DENG Zhanfeng, et al. Study on the failure mechanism of TSC high voltage thyristor valve over-current[J]. Automation of Electric Power Systems, 2007, 31(13): 23–28 [49] 岳珂, 庞磊, 陈炫宇, 等. 脉冲电压作用下晶闸管反向恢复期损伤效应与机理分析[J]. 电网技术, 2020, 44(7): 2794–2800 YUE Ke, PANG Lei, CHEN Xuanyu, et al. Damage effect and mechanism analysis of thyristor induced by pulse voltage in reverse recovery period[J]. Power System Technology, 2020, 44(7): 2794–2800 [50] 解婷, 查鲲鹏, 汤广福, 等. 过电流导致的HVDC换流阀失效机制研究[J]. 电网技术, 2010, 34(10): 71–75 XIE Ting, ZHA Kunpeng, TANG Guangfu, et al. Study on failure mechanism of HVDC valves caused by overcurrent in UHVDC power transmission devices[J]. Power System Technology, 2010, 34(10): 71–75 [51] 王振, 任孟干, 国建宝, 等. 直流输电换流阀晶闸管过电压保护研究[J]. 电力系统保护与控制, 2020, 48(10): 182–187 WANG Zhen, REN Menggan, GUO Jianbao, et al. Research on overvoltage protection of a thyristor on DC converter valves[J]. Power System Protection and Control, 2020, 48(10): 182–187 [52] BALIGA B J. Fundamentals of power semiconductor devices[M]. Springer Science & Business Media, 2010. [53] FENG J J, MEI Y H, LI X B, et al. Characterizations of a proposed 3300 V press-pack IGBT module using nanosilver paste for high-voltage applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(4): 2245–2253. [54] 梅云辉, 冯晶晶, 王晓敏, 等. 采用纳米银焊膏烧结互连技术的中高压IGBT模块及其性能表征[J]. 高电压技术, 2017, 43(10): 3307–3312 MEI Yunhui, FENG Jingjing, WANG Xiaomin, et al. Medium and high voltage IGBT module using nanosilver paste sintering technology and its performance characterization[J]. High Voltage Engineering, 2017, 43(10): 3307–3312 [55] 石廷昌, 李寒, 常桂钦, 等. 银烧结技术在压接型IGBT器件中的应用[J]. 机车电传动, 2021(5): 128–133 SHI Tingchang, LI Han, CHANG Guiqin, et al. Application of silver sintering technology in press-pack IGBTs[J]. Electric Drive for Locomotives, 2021(5): 128–133 [56] 龙海洋, 李辉, 王晓, 等. 纳米银烧结压接封装IGBT的长期可靠性研究[J]. 中国电机工程学报, 2020, 40(18): 5779–5787 LONG Haiyang, LI Hui, WANG Xiao, et al. Study on the long term reliability of nanosilver sintered press pack IGBT[J]. Proceedings of the CSEE, 2020, 40(18): 5779–5787 [57] 范思远. 压接式IGBT器件封装结构设计与压力和温度计算[D]. 北京: 华北电力大学, 2019. FAN Siyuan. Structure design along with pressure and temperature calculation of press-pack IGBT device[D]. Beijing: North China Electric Power University, 2019. [58] AMRO R, LUTZ J, RUDZKI J, et al. Power cycling at high temperature swings of modules with low temperature joining technique[C]//2006 IEEE International Symposium on Power Semiconductor Devices and IC's. Naples, Italy. IEEE, 2006: 1–4. [59] BECKEDAHL P, BUETOW S, MAUL A, et al. 400 A, 1200 V SiC power module with 1 nH commutation inductance[C]//CIPS 2016; 9 th International Conference on Integrated Power Electronics Systems. Nuremberg, Germany. VDE, 2016: 1–6. [60] CHANG H R, BU J K, KONG G, et al. 300 A 650 V 70 um thin IGBTs with double-sided cooling[C]//2011 IEEE 23 rd International Symposium on Power Semiconductor Devices and ICs. San Diego, CA, USA. IEEE, 2011: 320–323. [61] CHEN C, HUANG Z Z, CHEN L C, et al. Flexible PCB-based 3-D integrated SiC half-bridge power module with three-sided cooling using ultralow inductive hybrid packaging structure[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5579–5593. [62] CHEN Z, YAO Y Y, BOROYEVICH D, et al. An ultra-fast SiC phase-leg module in modified hybrid packaging structure[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh, PA, USA. IEEE, 2014: 2880–2886. [63] CHEN Z, YAO Y Y, BOROYEVICH D, et al. A 1200-V, 60-a SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2307–2320. [64] CHEN Z, YAO Y Y, ZHANG W L, et al. Development of a 1200 V, 120 A SiC MOSFET module for high-temperature and high-frequency applications[C]//The 1 st IEEE Workshop on Wide Bandgap Power Devices and Applications. Columbus, OH, USA. IEEE, 2014: 52–59. [65] HOU F Z, WANG W B, CAO L Q, et al. Review of packaging schemes for power module[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 223–238. [66] MUELLER C R, BAYERER R. Low-inductive inverter concept by 200 A/1200 V half bridge in an EasyPACK 2 B - following strip-line design[C]//CIPS 2014, 8 th International Conference on Integrated Power Electronics Systems. Nuremberg, Germany. VDE, 2014: 1–6. [67] NAKATSU K, NISHIHARA A, SASAKI K, et al. A novel direct water and double-sided cooled power module and a compact inverter for electrified vehicles[C]//2013 15 th European Conference on Power Electronics and Applications (EPE). Lille, France. IEEE, 2013: 1–6. [68] TEMPLE V, WALDRON J, AZOTEA J, et al. High frequency SiC majority carrier modules[C]//Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg, Germany. VDE, 2015: 1–7. [69] VAGNON E, CREBIER J C, AVENAS Y, et al. Study and realization of a low force 3D press-pack power module[C]//2008 IEEE Power Electronics Specialists Conference. Rhodes, Greece. IEEE, 2008: 1048–1054. [70] VAGNON E, JEANNIN P O, AVENAS Y, et al. A busbar like power module based on 3D chip on chip hybrid integration[C]//2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition. Washington, DC, USA. IEEE, 2009: 2072–2078. [71] WANG Y G, LI Y, DAI X P, et al. Thermal design of a dual sided cooled power semiconductor module for hybrid and electric vehicles[C]//2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Tampa, FL, USA. IEEE, 2017: 3068–3071. [72] WEIDNER K, KASPAR M, SELIGER N. Planar interconnect technology for power module system integration[C]//2012 7 th International Conference on Integrated Power Electronics Systems (CIPS). Nuremberg, Germany. IEEE, 2012: 1–5. [73] YANG F, WANG Z Q, LIANG Z X, et al. Electrical performance advancement in SiC power module package design with kelvin drain connection and low parasitic inductance[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 84–98. [74] 黄志召, 李宇雄, 陈材, 等. 基于新型混合封装的高速低感SiC半桥模块[J]. 电力电子技术, 2017, 51(12): 20–22 HUANG Zhizhao, LI Yuxiong, CHEN Cai, et al. An ultra-fast and low inductive SiC half-bridge module based on novel hybrid packaging structure[J]. Power Electronics, 2017, 51(12): 20–22 [75] 李聪成, 滕鹤松, 王玉林, 等. 银烧结技术在功率模块封装中的应用[J]. 电子工艺技术, 2016, 37(6): 311–315 LI Congcheng, TENG Hesong, WANG Yulin, et al. Silver sintering technology for power module packaging application[J]. Electronics Process Technology, 2016, 37(6): 311–315 [76] 王美玉, 胡伟波, 孙晓冬, 等. 功率电子封装关键材料和结构设计的研究进展[J]. 电子与封装, 2021, 21(10): 106–115 WANG Meiyu, HU Weibo, SUN Xiaodong, et al. Research progress on key materials and structure design of power electronics packaging materials[J]. Electronics & Packaging, 2021, 21(10): 106–115 [77] 刘国友, 王彦刚, 罗海辉, 等. IGBT模块的热设计概述[J]. 中国电力, 2020, 53(12): 55–61, 74 LIU Guoyou, WANG Yangang, LUO Haihui, et al. A review of thermal design for IGBT module[J]. Electric Power, 2020, 53(12): 55–61, 74 [78] 胡航海, 李敬如, 杨卫红, 等. 柔性直流输电技术的发展与展望[J]. 电力建设, 2011, 32(5): 62–66 HU Hanghai, LI Jingru, YANG Weihong, et al. The development and prospect of HVDC flexible technology[J]. Electric Power Construction, 2011, 32(5): 62–66 [79] 张东辉, 冯晓东, 孙景强, 等. 柔性直流输电应用于南方电网的研究[J]. 南方电网技术, 2011, 5(2): 1–6 ZHANG Donghui, FENG Xiaodong, SUN Jingqiang, et al. Research of VSC HVDC application to China southern power grid[J]. Southern Power System Technology, 2011, 5(2): 1–6 [80] 李标俊, 褚海洋, 庄志发, 等. 压接型IGBT功率模块加速老化试验方法[J]. 中国电力, 2022, 55(10): 87–91, 177 LI Biaojun, CHU Haiyang, ZHUANG Zhifa, et al. Accelerate aging test method for press-pack IGBT power module[J]. Electric Power, 2022, 55(10): 87–91, 177 [81] ASIMAKOPOULOS P, PAPASTERGIOU K, THIRINGER T, et al. On Vc method: in situ temperature estimation and aging detection of high-current IGBT modules used in magnet power supplies for particle accelerators[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 551–560. [82] CHOI U M, BLAABJERG F, JØRGENSEN S, et al. Reliability improvement of power converters by means of condition monitoring of IGBT modules[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7990–7997. [83] DUSMEZ S, ALI S H, HEYDARZADEH M, et al. Aging precursor identification and lifetime estimation for thermally aged discrete package silicon power switches[J]. IEEE Transactions on Industry Applications, 2017, 53(1): 251–260. [84] ERTURK F, AKIN B. A method for online ageing detection in SiC MOSFETs[C]//2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Tampa, FL, USA. IEEE, 2017: 3576–3581. [85] JI B, PICKERT V, CAO W P, et al. In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5568–5577. [86] LIU J C, ZHANG G G, CHEN Q, et al. In situ condition monitoring of IGBTs based on the miller plateau duration[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 769–782. [87] REN L, SHEN Q, GONG C Y. Real-time aging monitoring for power MOSFETs using threshold voltage[C]//IECON 2016 - 42 nd Annual Conference of the IEEE Industrial Electronics Society. Florence, Italy. IEEE, 2016: 441–446. [88] UGUR E, XU C, YANG F, et al. A new complete condition monitoring method for SiC power MOSFETs[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1654–1664. [89] 信金蕾. SiC MOSFET的可靠性及状态监测技术研究[D]. 天津: 天津理工大学, 2022. XIN Jinlei. Research on reliability and condition monitoring technology of SiC MOSFET[D]. Tianjin: Tianjin University of Technology, 2022. [90] 禹鑫. IGBT功率模块的失效研究与键合线状态监测[D]. 天津: 天津理工大学, 2015. YU Xin. Failure analysis and condition monitoring of bonding wire for IGBT power modules[D]. Tianjin: Tianjin University of Technology, 2015. |
[1] | 李标俊, 冷梅, 戴甲水, 王宁. 功率模块压接型IGBT温度循环试验热负载施加方法[J]. 中国电力, 2023, 56(2): 53-58,67. |
[2] | 李标俊, 褚海洋, 庄志发, 文军. 压接型IGBT功率模块加速老化试验方法[J]. 中国电力, 2022, 55(10): 87-91. |
[3] | 陈杰, 邓二平, 赵子轩, 应晓亮, 黄永章. 高压大功率IGBT器件温度系数校准方法研究[J]. 中国电力, 2021, 54(8): 109-117. |
[4] | 邓二平, 孟鹤立, 王延浩, 赵志斌, 黄永章. 高压大功率器件用6 kV/180 ℃高温反偏测试装置研制[J]. 中国电力, 2021, 54(2): 133-139. |
[5] | 李国庆, 尉鹏程, 刘禹彤, 边竞. 基于强迫过零技术的自换向高压直流断路器[J]. 中国电力, 2021, 54(1): 2-9,77. |
[6] | 沈弘, 仝翠芝, 东野忠昊, 齐磊, 王谦. 直流断路器用IGBT正向恢复特性实验建模[J]. 中国电力, 2021, 54(1): 54-61. |
[7] | 冯静波, 吕铮, 邓卫华, 胡榕, 王新颖. 柔性直流换流阀IGBT过流失效研究[J]. 中国电力, 2021, 54(1): 70-77. |
[8] | 李永霞, 龚宇雷, 郭修宵, 赵燕燕. 配网三相不平衡调节的换相算法[J]. 中国电力, 2020, 53(3): 52-58. |
[9] | 刘国友, 王彦刚, 罗海辉, 齐放, 李想, 吴义伯. IGBT模块的热设计概述[J]. 中国电力, 2020, 53(12): 55-61,74. |
[10] | 韩鲁斌, 梁琳, 康勇. 压接IGBT器件并联子模组热阻分布实验研究[J]. 中国电力, 2020, 53(12): 37-44. |
[11] | 李立, 王耀华, 高明超, 刘江, 金锐. 4 500 V沟槽栅IGBT芯片的设计与研制[J]. 中国电力, 2020, 53(12): 30-36. |
[12] | 邓真宇, 陈民铀, 赖伟, 李辉, 王晓, 李金元, 杜耀婷. 多芯片并联压接式IGBT中温度不均对电流分布的影响[J]. 中国电力, 2020, 53(12): 10-17. |
[13] | 唐新灵, 林仲康, 张西子, 燕树民, 苏冰, 王亮, 韩荣刚, 石浩. 大功率压接型IGBT器件中的机械应力研究[J]. 中国电力, 2020, 53(12): 62-74. |
[14] | 王希平, 丁祥宽, 姚芳, 唐圣学, 李志刚. IGBT模块失效机理及状态监测研究综述[J]. 中国电力, 2019, 52(9): 61-72. |
[15] | 邓二平, 孟鹤立, 王延浩, 吴宇轩, 赵志斌, 黄永章. 高压大功率器件用高温栅偏测试装置研制[J]. 中国电力, 2019, 52(9): 48-53,72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||