[1] 屈小云, 吴鸣, 李奇, 等. 多能互补综合能源系统综合评价研究进展综述[J]. 中国电力, 2021, 54(11): 153–163 QU Xiaoyun, WU Ming, LI Qi, et al. Review on comprehensive evaluation of multi-energy complementary integrated energy systems[J]. Electric Power, 2021, 54(11): 153–163 [2] 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42(6): 1697–1708 ZENG Ming, LIU Yingxin, ZHOU Pengcheng, et al. Review and prospects of integrated energy system modeling and benefit evaluation[J]. Power System Technology, 2018, 42(6): 1697–1708 [3] 程浩忠, 胡枭, 王莉, 等. 区域综合能源系统规划研究综述[J]. 电力系统自动化, 2019, 43(7): 2–13 CHENG Haozhong, HU Xiao, WANG Li, et al. Review on research of regional integrated energy system planning[J]. Automation of Electric Power Systems, 2019, 43(7): 2–13 [4] GEIDL M. Integrated modeling and optimization of multi-carrier energy systems[D]. Zürich: ETH Zürich, 2007. [5] 管霖, 陈鹏, 唐宗顺, 等. 考虑冷热电存储的区域综合能源站优化设计方法[J]. 电网技术, 2016, 40(10): 2934–2943 GUAN Lin, CHEN Peng, TANG Zongshun, et al. Integrated energy station design considering cold and heat storage[J]. Power System Technology, 2016, 40(10): 2934–2943 [6] 邹磊, 唐一铭, 刘祝平, 等. 考虑分期规划与设备替换的园区型综合能源系统最优配置方法[J]. 中国电力, 2021, 54(9): 176–186 ZOU Lei, TANG Yiming, LIU Zhuping, et al. Optimal design method of integrated energy systems considering staged planning and equipment replacement[J]. Electric Power, 2021, 54(9): 176–186 [7] 黄伟, 柳思岐, 叶波. 考虑源-荷互动的园区综合能源系统站-网协同优化[J]. 电力系统自动化, 2020, 44(14): 44–53 HUANG Wei, LIU Siqi, YE Bo. Station-network cooperative optimization of integrated energy system for park considering source-load interaction[J]. Automation of Electric Power Systems, 2020, 44(14): 44–53 [8] 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41(9): 148–155 CHEN Zhi, HU Zhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41(9): 148–155 [9] 张安安, 张红, 吴建中, 等. 离岸微型综合能源系统多目标随机规划[J]. 电力系统自动化, 2019, 43(7): 129–135, 173 ZHANG An'an, ZHANG Hong, WU Jianzhong, et al. Multi-objective stochastic planning for offshore micro integrated energy systems[J]. Automation of Electric Power Systems, 2019, 43(7): 129–135, 173 [10] 赵瑾, 雍静, 郇嘉嘉, 等. 基于长时间尺度的园区综合能源系统随机规划[J]. 电力自动化设备, 2020, 40(3): 62–67 ZHAO Jin, YONG Jing, HUAN Jiajia, et al. Stochastic planning of park-level integrated energy system based on long time-scale[J]. Electric Power Automation Equipment, 2020, 40(3): 62–67 [11] 江卓翰, 刘志刚, 许加柱, 等. 计及风光储的冷热电联供系统双层协同优化配置方法[J]. 电力建设, 2021, 42(8): 71–80 JIANG Zhuohan, LIU Zhigang, XU Jiazhu, et al. Two-layer collaborative optimization configuration method for CCHP system with wind-solar-storage[J]. Electric Power Construction, 2021, 42(8): 71–80 [12] 沈欣炜, 郭庆来, 许银亮, 等. 考虑多能负荷不确定性的区域综合能源系统鲁棒规划[J]. 电力系统自动化, 2019, 43(7): 34–41 SHEN Xinwei, GUO Qinglai, XU Yinliang, et al. Robust planning method for regional integrated energy system considering multi-energy load uncertainties[J]. Automation of Electric Power Systems, 2019, 43(7): 34–41 [13] BEN-HAIM Y. Info-gap decision theory[M]. 2nd Ed. Academic Press, 2006. [14] 郭祚刚, 徐敏, 于浩, 等. 考虑多重不确定性的园区综合能源系统区间优化调度[J]. 中国电力, 2022, 55(11): 121–128, 141 GUO Zuogang, XU Min, YU Hao, et al. Interval optimal scheduling of park comprehensive energy system considering multiple uncertainties[J]. Electric Power, 2022, 55(11): 121–128, 141 [15] CAO X Y, WANG J X, ZENG B. A chance constrained information-gap decision model for multi-period microgrid planning[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2684–2695. [16] 张海静, 杨雍琦, 赵昕, 等. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54(4): 141–150 ZHANG Haijing, YANG Yongqi, ZHAO Xin, et al. Two-level optimal dispatching strategy for regional integrated energy system considering demand response[J]. Electric Power, 2021, 54(4): 141–150 [17] 叶鹤林, 刘松, 胡剑, 等. 基于IGDT的含光热电站电力系统多源联合调度策略[J]. 电力系统保护与控制, 2021, 49(23): 35–43 YE Helin, LIU Song, HU Jian, et al. Multi-source joint dispatching strategy for a power system with concentrating solar power plants based on IGDT[J]. Power System Protection and Control, 2021, 49(23): 35–43 [18] 汤旸, 刘翊枫, 王静, 等. 电力市场售电公司最优购售电量决策模型及其应用[J]. 电力科学与技术学报, 2022, 37(4): 3–12 TANG Yang, LIU Yifeng, WANG Jing, et al. Optimal decision model and application of electricity purchasing and selling of electricity retailer in electricity market[J]. Journal of Electric Power Science and Technology, 2022, 37(4): 3–12 [19] 韩小齐, 刘文颖, 庞清仑, 等. 考虑日前现货市场风险的电力负荷参与系统调峰控制模型[J]. 电力系统保护与控制, 2022, 50(17): 55–67 HAN Xiaoqi, LIU Wenying, PANG Qinglun, et al. Peak shaving control model of power load participation system considering day-ahead spot market risk[J]. Power System Protection and Control, 2022, 50(17): 55–67 [20] 黄敬尧, 朱嘉帅, 侯登旭, 等. 考虑实时电力交易的电动汽车群组充放电优化策略[J]. 南方电网技术, 2021, 15(3): 113–120 HUANG Jingyao, ZHU Jiashuai, HOU Dengxu, et al. Charge and discharge optimization strategy of electric vehicle groups participating in real-time power transaction[J]. Southern Power System Technology, 2021, 15(3): 113–120 [21] 王冰, 李娜, 杨旭升, 等. 基于下方风险管理的虚拟能源站两阶段随机优化运行[J]. 南方电网技术, 2022, 16(8): 47–58 WANG Bing, LI Na, YANG Xusheng, et al. Two-stage stochastic optimal operation of virtual energy station based on downside risk management[J]. Southern Power System Technology, 2022, 16(8): 47–58 [22] 王祺, 王承民, 谢宁, 等. 混合CVaR-IGDT的区域综合能源系统扩展规划模型[J]. 电网技术, 2020, 44(2): 505–515 WANG Qi, WANG Chengmin, XIE Ning, et al. A hybrid CVaR-IGDT expansion planning model for regional integrated energy system[J]. Power System Technology, 2020, 44(2): 505–515 [23] 魏震波, 郭毅, 魏平桉, 等. 基于IGDT的电-气互联综合能源系统多目标扩展规划模型[J]. 高电压技术, 2022, 48(2): 526–537 WEI Zhenbo, GUO Yi, WEI Ping'an, et al. IGDT-based multi-objective expansion planning model for integrated natural gas and electric power systems[J]. High Voltage Engineering, 2022, 48(2): 526–537 [24] AGHAEI J, AMJADY N, SHAYANFAR H A. Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method[J]. Applied Soft Computing, 2011, 11(4): 3846–3858. [25] YU S W, ZHOU S S, ZHENG S H, et al. Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach[J]. Renewable Energy, 2019, 139: 1086–1098. |