[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893–1904, 2205 ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893–1904, 2205 [2] 阎博, 张昊, 郭子明, 等. 基于多源数据融合的电网故障综合分析与智能告警技术研究与应用[J]. 中国电力, 2018, 51(2): 39–46 YAN Bo, ZHANG Hao, GUO Ziming, et al. Research and application of power grid fault integrated analysis and smart alarm based on multi-data source fusion[J]. Electric Power, 2018, 51(2): 39–46 [3] 张健, 于浩, 梁建权, 等. 基于数据驱动的多污染模式电能质量耦合性评估[J]. 中国电力, 2022, 55(11): 84–90 ZHANG Jian, YU Hao, LIANG Jianquan, et al. Data-driven coupling evaluation of power quality in multi-pollution mode[J]. Electric Power, 2022, 55(11): 84–90 [4] 黄慧, 贾嵘, 师小雨, 等. 考虑机组动态特性的超短期风电功率预测及不确定性量化分析[J]. 电力系统保护与控制, 2021, 49(8): 109–117 HUANG Hui, JIA Rong, SHI Xiaoyu, et al. Ultrashort-term wind power prediction considering the dynamic characteristics of a unit and uncertainty quantitative analysis[J]. Power System Protection and Control, 2021, 49(8): 109–117 [5] 李睿智, 刘念, 延肖何. 基于势博弈的综合能源系统用户能量管理优化方法[J]. 电力科学与技术学报, 2021, 36(1): 21–31 LI Ruizhi, LIU Nian, YAN Xiaohe. An optimization method for user energy management of integrated energy system based on potential game[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 21–31 [6] 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合:(一)大数据与电力大数据[J]. 电力系统自动化, 2016, 40(1): 1–8 XUE Yusheng, LAI Yening. Integration of macro energy thinking and big data thinking part one: big data and power big data[J]. Automation of Electric Power Systems, 2016, 40(1): 1–8 [7] 管霖, 黄济宇, 蔡锱涵, 等. 图深度学习技术在电力系统分析与决策领域的应用与展望[J]. 高电压技术, 2022, 48(9): 3405–3422 GUAN Lin, HUANG Jiyu, CAI Zihan, et al. Application and prospect of graph deep learning technique in power system analysis and decision[J]. High Voltage Engineering, 2022, 48(9): 3405–3422 [8] 刘文霞, 黄钰辰, 万海洋, 等. 复杂网络理论在能源互联网脆弱性与鲁棒性研究中的应用[J]. 智慧电力, 2021, 49(1): 14–21 LIU Wenxia, HUANG Yuchen, WAN Haiyang, et al. Application of complex network theory in vulnerability and robustness evaluation of energy Internet[J]. Smart Power, 2021, 49(1): 14–21 [9] 万齐鸣, 王思宁, 何鑫. 数据中台SG-CIM模型应用方法[J]. 电信科学, 2020, 36(3): 136–143 WAN Qiming, WANG Sining, HE Xin. SG-CIM model application method in data middle platform[J]. Telecommunications Science, 2020, 36(3): 136–143 [10] 刘永辉, 张显, 孙鸿雁, 等. 能源互联网背景下电力市场大数据应用探讨[J]. 电力系统自动化, 2021, 45(11): 1–10 LIU Yonghui, ZHANG Xian, SUN Hongyan, et al. Discussion on application of big data in electricity market in background of energy Internet[J]. Automation of Electric Power Systems, 2021, 45(11): 1–10 [11] 师春雨. 电力设备多源异构大数据融合方法研究[D]. 北京: 华北电力大学, 2018. SHI Chunyu. Research on method of multi-source heterogeneous data fusion for electric power equipment[D]. Beijing: North China Electric Power University, 2018. [12] 王红霞, 王波, 陈红坤, 等. 电力数据融合: 基本概念、抽象化结构、关键技术和应用场景[J]. 供用电, 2020, 37(4): 24–32 WANG Hongxia, WANG Bo, CHEN Hongkun, et al. Power data fusion: basic concepts, abstract structures, key technologies and application scenarios[J]. Distribution & Utilization, 2020, 37(4): 24–32 [13] 陈一丰, 唐坤杰, 董树锋, 等. 输配一体化潮流计算收敛性分析及提升方法[J]. 中国电机工程学报, 2022, 42(20): 7524–7535 CHEN Yifeng, TANG Kunjie, DONG Shufeng, et al. Convergence analysis and promotion method of power flow calculation of integrated transmission and distribution networks[J]. Proceedings of the CSEE, 2022, 42(20): 7524–7535 [14] 侯仁政, 张岩, 张小易, 等. 基于多源数据融合的电力系统故障诊断与评估平台开发[J]. 机电工程, 2017, 34(10): 1173–1179 HOU Renzheng, ZHANG Yan, ZHANG Xiaoyi, et al. Power system fault diagnosis and evaluation platform based on multi-source data fusion[J]. Journal of Mechanical & Electrical Engineering, 2017, 34(10): 1173–1179 [15] 赵晋泉, 杨婷, 吴凡, 等. 基于数据挖掘的输配网一体化事故响应决策[J]. 电力系统保护与控制, 2018, 46(5): 1–8 ZHAO Jinquan, YANG Ting, WU Fan, et al. Data mining based accident response and decision-making for integrated transmission and distribution grid[J]. Power System Protection and Control, 2018, 46(5): 1–8 [16] 邓雯雯. 国网A公司基于主配一体化调控云平台的技术创新战略研究[D]. 成都: 电子科技大学, 2020. DENG Wenwen. Research on technology innovation strategy of A company of state grid corporation based on power dispatching control cloud platform of main distribution[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [17] 刘广一, 戴仁昶, 路轶, 等. 电力图计算平台及其在能源互联网中的应用[J]. 电网技术, 2021, 45(6): 2051–2063 LIU Guangyi, DAI Renchang, LU Yi, et al. Electric power graph computing platform and its application in energy Internet[J]. Power System Technology, 2021, 45(6): 2051–2063 [18] 刘广一, 王继业, 李洋, 等. “电网一张图”时空信息管理系统[J]. 电力信息与通信技术, 2020, 18(1): 7–17 LIU Guangyi, WANG Jiye, LI Yang, et al. “One graph of power grid” spatio-temporal information management system[J]. Electric Power Information and Communication Technology, 2020, 18(1): 7–17 [19] 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036–3046 HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036–3046 [20] 刘金森, 罗宁, 王杰, 等. 基于海量场景降维的配电网源网荷储协同规划[J]. 中国电力, 2022, 55(12): 78–85 LIU Jinsen, LUO Ning, WANG Jie, et al. Massive scenario reduction based distribution-level power system planning considering the coordination of source, network, load and storage[J]. Electric Power, 2022, 55(12): 78–85 [21] 罗金满, 刘丽媛, 刘飘, 等. 考虑源网荷储协调的主动配电网优化调度方法研究[J]. 电力系统保护与控制, 2022, 50(1): 167–173 LUO Jinman, LIU Liyuan, LIU Piao, et al. An optimal scheduling method for active distribution network considering source network load storage coordination[J]. Power System Protection and Control, 2022, 50(1): 167–173 [22] 陈璨, 樊小伟, 张文浩, 等. 促进分布式光伏消纳的两阶段源网荷储互动优化运行策略[J]. 电网技术, 2022, 46(10): 3786–3799 CHEN Can, FAN Xiaowei, ZHANG Wenhao, et al. Two-staged generation-grid-load-energy storage interactive optimization operation strategy for promotion of distributed photovoltaic consumption[J]. Power System Technology, 2022, 46(10): 3786–3799 [23] 秦帅, 邹晴, 李超然, 等. 基于深度学习和智能在线场景匹配的配电网源网荷储无功协调优化策略[J]. 电网与清洁能源, 2022, 38(5): 25–35 QIN Shuai, ZOU Qing, LI Chaoran, et al. Strategy on reactive power coordination optimization in distribution network “source-network-load-storage” system based on deep learning and intelligence online scene matching[J]. Power System and Clean Energy, 2022, 38(5): 25–35 [24] 李建林, 郭兆东, 马速良, 等. 新型电力系统下“源网荷储”架构与评估体系综述[J]. 高电压技术, 2022, 48(11): 4330–4342 LI Jianlin, GUO Zhaodong, MA Suliang, et al. Overview of the “source-grid-load-storage” architecture and evaluation system under the new power system[J]. High Voltage Engineering, 2022, 48(11): 4330–4342 [25] 王继业. 人工智能赋能源网荷储协同互动的应用及展望[J]. 中国电机工程学报, 2022, 42(21): 7667–7682 WANG Jiye. Application and prospect of source-grid-load-storage coordination enabled by artificial intelligence[J]. Proceedings of the CSEE, 2022, 42(21): 7667–7682 [26] 王宣元, 刘蓁. 虚拟电厂参与电网调控与市场运营的发展与实践[J]. 电力系统自动化, 2022, 46(18): 158–168 WANG Xuanyuan, LIU Zhen. Development and practice of virtual power plant participating in power grid regulation and market operation[J]. Automation of Electric Power Systems, 2022, 46(18): 158–168 [27] 严兴煜, 高赐威, 陈涛, 等. 数字孪生虚拟电厂系统框架设计及其实践展望[J]. 中国电机工程学报, 2023, 43(2): 604–619 YAN Xingyu, GAO Ciwei, CHEN Tao, et al. Framework design and application prospect for digital twin virtual power plant system[J]. Proceedings of the CSEE, 2023, 43(2): 604–619 [28] 康重庆, 陈启鑫, 苏剑, 等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化, 2022, 46(18): 3–14 KANG Chongqing, CHEN Qixin, SU Jian, et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46(18): 3–14 [29] 关舒丰, 王旭, 蒋传文, 等. 基于可控负荷响应性能差异的虚拟电厂分类聚合方法及辅助服务市场投标策略研究[J]. 电网技术, 2022, 46(3): 933–944 GUAN Shufeng, WANG Xu, JIANG Chuanwen, et al. Classification and aggregation of controllable loads based on different responses and optimal bidding strategy of VPP in ancillary market[J]. Power System Technology, 2022, 46(3): 933–944 [30] 龚开, 黄鹏飞, 王旭, 等. 基于代理模型进化算法的用户侧灵活爬坡产品交易策略[J]. 电力系统自动化, 2022, 46(16): 132–141 GONG Kai, HUANG Pengfei, WANG Xu, et al. Trading strategies for flexible ramping product on demand side based on surrogate-assisted evolutionary algorithm[J]. Automation of Electric Power Systems, 2022, 46(16): 132–141 [31] 殷爽睿, 艾芊, 宋平, 等. 虚拟电厂分层互动模式与可信交易框架研究与展望[J]. 电力系统自动化, 2022, 46(18): 118–128 YIN Shuangrui, AI Qian, SONG Ping, et al. Research and prospect of hierarchical interaction mode and trusted transaction framework for virtual power plant[J]. Automation of Electric Power Systems, 2022, 46(18): 118–128 [32] 刘吉成, 郭启蒙, 孙嘉康. 区块链下虚拟电厂混合储能容量优化配置及收益分配[J/OL]. 现代电力, 2022: 1–10 [2022-11-03].https://kns.cnki.net/kcms/detail/11.3818.TM.20220808.1020.004.html. LIU Jicheng, GUO Qimeng, SUN Jiakang. Optimal allocation and revenue distribution of hybrid energy storage capacity in virtual power plant under blockchain[J/OL]. Modern Electric Power, 2022: 1–10 [2022-11-03].https://kns.cnki.net/kcms/detail/11.3818.TM.20220808.1020.004.html. [33] 史佳琪, 谭涛, 郭经, 等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术, 2018, 42(3): 698–707 SHI Jiaqi, TAN Tao, GUO Jing, et al. Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration[J]. Power System Technology, 2018, 42(3): 698–707 [34] 龚逊东, 薛溟枫, 毛晓波, 等. 基于模糊融合的多元温控负荷群调控及风电消纳策略[J]. 电力需求侧管理, 2020, 22(4): 77–82 GONG Xundong, XUE Mingfeng, MAO Xiaobo, et al. Strategy for multivariate thermostatically controlled load group regulation and wind power absorption based on fuzzy theory[J]. Power Demand Side Management, 2020, 22(4): 77–82 [35] 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63–70 SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 45(5): 63–70 [36] 叶剑华, 曹旌, 杨理, 等. 基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J]. 电网技术, 2022, 46(7): 2610–2622 YE Jianhua, CAO Jing, YANG Li, et al. Ultra short-term load forecasting of user level integrated energy system based on variational mode decomposition and multi-model fusion[J]. Power System Technology, 2022, 46(7): 2610–2622 [37] 岳伟民, 刘青荣, 阮应君, 等. 基于MTL-GRU-Attention的综合能源系统多元负荷预测[J/OL]. 电力系统及其自动化学报: 1–8 [2022-11-03]. https: //doi. org/10.19635/j. cnki. csu-epsa.001121. YUE Weimin, LIU Qingrong, RUAN Yingjun, et al. Multiple load forecasting of integrated energy system based on MTL-GRU-Attention[J]. Proceedings of the CSU-EPSA, 1–8 [2022-11-03].https://doi.org/10.19635/j.cnki.csu-epsa.001121. [38] 鲁斌, 霍泽健, 俞敏. 基于LSTNet-Skip的综合能源系统多元负荷超短期预测[J/OL]. 中国电机工程学报, 2022: 1–12. (2022-04-12).https://kns.cnki.net/kcms/detail/11.2107.tm.20220410.1832.003.html. LU Bin, HUO Zejian, YU Min. Multi load ultra short-term forecasting of integrated energy system based on LSTNet-skip[J/OL]. Proceedings of the CSEE, 2022: 1–12. (2022-04-12).https://kns.cnki.net/kcms/detail/11.2107.tm.20220410.1832.003.html. [39] 赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J/OL]. 中国电机工程学报, 2022: 1–23 [2022-12-30].https://kns.cnki.net/kcms/detail/11.2107.tm.20220824.1607.010.html. ZHAO Dongmei, XU Chenyu, TAO Ran, et al. Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J/OL]. Proceedings of the CSEE, 2022: 1–23 [2022-12-30].https://kns.cnki.net/kcms/detail/11.2107.tm.20220824.1607.010.html. [40] 北京理工大学能源与环境政策研究中心. 中国碳市场回顾与展望[EB/OL]. (2022-01-09)[2022-10-27].https://ceep.bit.edu.cn/docs//2022-01/eb3a1bf65b6e499281122c9d55ef2f7d.pdf. [41] 国家发展改革委. 全国碳排放权交易市场建设方案(发电行业)[A]. 北京: 国家发展改革委, 2017. [42] 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41(3): 10–17 CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41(3): 10–17 [43] 林楷东, 陈泽兴, 张勇军, 等. 含P2G的电—气互联网络风电消纳与逐次线性低碳经济调度[J]. 电力系统自动化, 2019, 43(21): 23–33 LIN Kaidong, CHEN Zexing, ZHANG Yongjun, et al. Wind power accommodation and successive linear low-carbon economic dispatch of integrated electricity-gas network with power to gas[J]. Automation of Electric Power Systems, 2019, 43(21): 23–33 [44] 崔杨, 曾鹏, 仲悟之, 等. 考虑富氧燃烧技术的电–气–热综合能源系统低碳经济调度[J]. 中国电机工程学报, 2021, 41(2): 592–608 CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electro-gas-thermal integrated energy system based on oxy-combustion technology[J]. Proceedings of the CSEE, 2021, 41(2): 592–608 [45] 毕瀚文, 范晓舟, 肖海, 等. 支撑电力系统全环节碳流追踪的节点导纳矩阵算法研究[J/OL]. 中国电机工程学报, 2022: 1–13 [2022-11-03].https://kns.cnki.net/kcms/detail/11.2107.TM.20221010.1151.002.html. BI Hanwen, FAN Xiaozhou, XIAO Hai, et al. A node admittance matrix algorithm to support the carbon emission tracing model of whole power system[J/OL]. Proceedings of the CSEE, 2022: 1–13 [2022-11-03].https://kns.cnki.net/kcms/detail/11.2107.TM.20221010.1151.002.html. |