[1] LI Z H, ZHANG H, CHEN H P, et al. Water vapor capture using microporous ceramic membrane[J]. Desalination, 2020, 482: 114405. [2] 梁秀进,朱文韬,魏宏鸽,等. 燃煤机组烟气消白技术路线选择与经济分析[J]. 中国电力, 2019, 52(3): 16-22 LIANG Xiujin, ZHU Wentao, WEI Hongge, et al. Technical route selection and economic analysis on wet plume treatment for coal-fired units[J]. Electric Power, 2019, 52(3): 16-22 [3] 王琳,刘广建,陈海平. 燃煤电厂烟气湿烟羽消除技术[J]. 中国电力, 2019, 52(10): 162-170 WANG Lin, LIU Guangjian, CHEN Haiping. Wet plume removal technologies for coal-fired power plants[J]. Electric Power, 2019, 52(10): 162-170 [4] XIONG Y Y, TAN H Z, WANG Y B, et al. Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers[J]. Journal of Cleaner Production, 2017, 161: 1416-1422. [5] KWANGKOOK J. Condensation of water vapor and sulfuric acid in boiler flue gas[D]. Bethlehem: Lehigh University, 2009. [6] 兰俊杰. 火电厂排烟中水蒸汽的复合膜捕集技术研究[D]. 北京: 华北电力大学, 2013. LAN Junjie. Research on the technology of capturing water vapor in flue gas of thermal power plant by composite membrane[D]. Beijing: North China Electric Power University, 2013. [7] DU J R, SHI X Y, FENG X S, et al. Membrane gas dehydration in a pressure-electric coupled field[J]. Journal of Membrane Science, 2015, 493: 444-451. [8] SIJBESMA H, NYMEIJER K, VAN MARWIJK R, et al. Flue gas dehydration using polymer membranes[J]. Journal of Membrane Science, 2008, 313(1/2): 263-276. [9] 汪洋, 沈煜晖, 陶爱平, 等. 烟气膜法水分捕集技术的研究进展[J]. 电力科技与环保, 2013, 29(3): 13-14 WANG Yang, SHEN Yuhui, TAO Aiping, et al. Progress and prospect of study on water capture from flue gas technology[J]. Electric Power Technology and Environmental Protection, 2013, 29(3): 13-14 [10] LI Z H, ZHANG H, CHEN H P, et al. Experimental research on the heat transfer and water recovery performance of transport membrane condenser[J]. Applied Thermal Engineering, 2019, 160: 114060. [11] LI Z H, XUE K L, ZHANG H, et al. Numerical investigation on condensation mode of the transport membrane condenser[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120305. [12] LIN C X, WANG D X, BAO A N. Numerical modeling and simulation of condensation heat transfer of a flue gas in a bundle of transport membrane tubes[J]. International Journal of Heat and Mass Transfer, 2013, 60: 41-50. [13] WANG D X. Transport membrane condenser for water and energy recovery from power plant flue gas[R]. Des Plaines: Gas Technology Institute, 2012. [14] WANG T T, YUE M W, QI H, et al. Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. [15] YUE M W, ZHAO S F, FERON P H M, et al. Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622. [16] CHEN H P, ZHOU Y N, CAO S T, et al. Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J]. Applied Thermal Engineering, 2017, 110: 686-694. [17] 陈海平, 仲雅娟, 周亚男, 等. 复合膜法火电厂烟气捕水性能的实验研究[J]. 中国电力, 2015, 48(7): 63-67 CHEN Haiping, ZHONG Yajuan, ZHOU Yanan, et al. Experimental study on flue gas water recovery performance using composite membranes in thermal power plants[J]. Electric Power, 2015, 48(7): 63-67 [18] ZHOU Y N, CHEN H P, XIE T, et al. Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery[J]. International Journal of Heat and Mass Transfer, 2017, 112(1): 643-648. [19] LI Z H, ZHANG H, CHEN H P. Application of transport membrane condenser for recovering water in a coal-fired power plant: a pilot study[J]. Journal of Cleaner Production, 2020, 261: 121229. [20] LI Z H, MI D B, ZHANG H, et al. Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser[J]. Energy, 2021, 217: 119392.
|