[1] 陆玉, 韩粉女, 仓辉, 等. 燃煤烟气脱汞技术的现状及进展[J]. 工业安全与环保, 2013, 39(2): 32–34 LU Yu, HAN Fennv, CANG Hui, et al. The status and process of mercury removal from coal-fired flue gas[J]. Industrial Safety and Environmental Protection, 2013, 39(2): 32–34 [2] GB13223-2011, 火电厂大气污染物排放标准[S]. [3] 付康丽, 赵婷雯, 姚明宇, 等. 燃煤烟气脱汞技术研究进展[J]. 热力发电, 2017, 46(6): 1–5 FU Kangli, ZHAO Tingwen, YAO Mingyu, et al. Mercury removal technology for coal-fired flue gas: research progress[J]. Thermal Power Generation, 2017, 46(6): 1–5 [4] WANG Y, QI Y X, LI Y F, et al. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase[J]. Journal of Hazardous Materials, 2013, 260: 9–15. [5] YANG H Q, XU Z H, FAN M H, et al. Adsorbents for capturing mercury in coal-fired boiler flue gas[J]. Journal of Hazardous Materials, 2007, 146(1/2): 1–11. [6] JONES A P, HOFFMANN J W, SMITH D N, et al. DOE/NETL’s phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection[J]. Environmental Science & Technology, 2007, 41(4): 1365–1371. [7] CHIU C H, HSI H C, LIN H P. Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts[J]. Catalysis Today, 2015, 245: 2–9. [8] XIANG J, WANG P Y, SU S, et al. Control of NO and Hg0 emissions by SCR catalysts from coal-fired boiler[J]. Fuel Processing Technology, 2015, 135: 168–173. [9] 游华伟. MnOx-CeO2/γ-Al2O3催化剂脱硝脱汞的实验研究[D]. 武汉: 华中科技大学, 2012. YOU Huawei. Experimental study of removal of NO and Hg0 by the catalyst of MnOx-CeO2/γ-Al2O3[D]. Wuhan: Huazhong University of Science and Technology, 2012. [10] LI Z, SHEN Y S, LI X H, et al. Synergetic catalytic removal of Hg0 and NO over CeO2(ZrO2)/TiO2[J]. Catalysis Communications, 2016, 82: 55–60. [11] LIU Y X, ZHOU J F, ZHANG Y C, et al. Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor[J]. Fuel, 2015, 145: 180–188. [12] ZHOU C S, SUN L S, ZHANG A C, et al. Elemental mercury (Hg0) removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0.55O4/H2O2 advanced oxidation processes[J]. Chemical Engineering Journal, 2015, 273: 381–389. [13] 宋文玉, 李振华, 王安周. 二过碘酸含铜(Ⅲ)配离子氧化异丙胺的动力学及机理[J]. 高等学校化学学报, 1997, 18(11): 1842–1846 SONG Wenyu, LI Zhenhua, WANG Anzhou. Kinetics and mechanism of oxidation of iso-propyl amine by diperiodatocuprate (Ⅲ) complex ion[J]. Chemical Research in Chinese Universities, 1997, 18(11): 1842–1846 [14] KRISHNA K V, RAO P J P. Kinetics and mechanism of oxidation of some reducing sugars by diperiodatoargentate (III) in alkaline medium[J]. Transition Metal Chemistry, 1995, 20: 344–346. [15] BALIKUNGERI A, PELLETIER M, MONNIER D. Contribution to the study of the complexes bis(dihydrogen tellurato)cuprate(III) and argentate(III), bis(hydrogen periodato)cuprate(III) and argentate(III)[J]. Inorganica Chimica Acta, 1977, 22: 7–14. [16] JAISWAL P K, YADAVA K L. ChemInform abstract: DETERMINATION OF SUGARS AND ORGANIC ACIDS WITH PERIODATO COMPLEX OF CU(III)[J]. Chemischer Informationsdienst, 1973, 4(51). [17] LIU Y X, WANG Q. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in A bubble column reactor[J]. Environmental Science & Technology, 2014, 48(20): 12181–12189. [18] SACHDEV N, SINGH A K, SHRIVASTAVA A, et al. Kinetic and mechanistic investigations of chlorocomplex of Ru(III) and Ir(III) catalyzed oxidation of d-fructose by N-bromophthalimide in acidic medium[J]. Journal of Saudi Chemical Society, 2016, 20: 357–375. [19] HUTSON N D, KRZYZYNSKA R, SRIVASTAVA R K. Simultaneous removal of SO2, NOx and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial & Engineering Chemistry Research, 2008, 47: 5825–5831. [20] ABBAR J C, MALODE S J, NANDIBEWOOR S T. Mechanistic aspects of uncatalyzed and ruthenium(III) catalyzed oxidation of dl-ornithine by copper(III) periodate complex in aqueous alkaline medium: a comparative kinetic study[J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1/2): 88–99. [21] 王晓倩. Cu(III)配离子氧化胺类、羟基酸的反应动力学[D]. 保定: 河北大学, 2010. WANG Xiaoqian. Kinetics of oxidation of some amino compounds and hydroxy acid by Cu (III)complex ion[D]. Baoding: Hebei University, 2010. [22] ZHAO Y, XUE F, ZHAO X, et al. Experimental study on elemental mercury removal by diperiodatonickelate (IV) solution[J]. Journal of hazardous materials, 2013, 260: 383–388. [23] NIKSA S, HELBLE J J, FUJIWARA N. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems[J]. Environmental Science & Technology, 2001, 35(18): 3701–3706. [24] SENEVIRATNE H R, CHARPENTEAU C, GEORGE A, et al. Ranking low cost sorbents for mercury capture from simulated flue gases[J]. Energy & Fuels, 2007, 21(6): 3249–3258. [25] DUNHAM G E, OLSON E S, MILLER S J. Impact of flue gas constituents on carbon sorbents[C]//Proceedings of the Air Quality II: Mercury, Trace Elements, and Particulate Matter Conference. 2000: 19-21. [26] WEN X Y, LI C T, FAN X P, et al. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3[J]. Energy & Fuels, 2011, 25(7): 2939–2944. [27] ESWARAN S, STENGER H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts[J]. Energy & Fuels, 2005, 19(6): 2328–2334. [28] ZHAO Y, HAN Y H, CHEN C. Simultaneous removal of SO2 and NO from flue gas using multicomposite active absorbent[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 480–486. [29] LIU Y X, ZHANG J, SHENG C D, et al. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Science China Technological Sciences, 2010, 53(7): 1839–1846. [30] ZHAO Y, XUE F M, MA T Z. Experimental study on Hg0 removal by diperiodatocuprate (III) coordination ion solution[J]. Fuel Processing Technology, 2013, 106: 468–473. [31] ZHAO Y, QI M, HAO R L. Elemental mercury removal from flue gas by diperiodatoargentate(III) solution[J]. International Journal of Chemical Reactor Engineering, 2017, 15(6). [32] 叶隆炳, 鄢尧德. 金属离子在水溶液中的存在形式[J]. 四川师范大学学报(自然科学版), 1987(4): 142–148 [33] FAULCONER E K, VON REITZENSTEIN N V H, MAZYCK D W. Optimization of magnetic powdered activated carbon for aqueous Hg (II) removal and magnetic recovery[J]. Journal of Hazardous Materials, 2012, 199: 9-14.
|