[1] TANG L, QU J B, MI Z F, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J]. Nature Energy, 2019, 4(11): 929-938. [2] 朱法华, 李军状. 我国燃煤电厂SO3和可凝结颗粒物控制存在问题与建议[J]. 环境影响评价, 2019, 41(3): 1-5 ZHU Fahua, LI Junzhuang. Questions and suggestions on the control of SO3 and condensable particulate matter from coal-fired power plants in China[J]. Environmental Impact Assessment, 2019, 41(3): 1-5 [3] 杨柳, 张斌, 王康慧, 等. 超低排放路线下燃煤烟气可凝结颗粒物在WFGD、WESP中的转化特性[J]. 环境科学, 2019, 40(1): 121-125 YANG Liu, ZHANG Bin, WANG Kanghui, et al. Conversion characteristics of combustible particles from coal-fired flue gas in WFGD and WESP[J]. Environmental Science, 2019, 40(1): 121-125 [4] 国家能源局. 火电厂烟气中SO3测试方法控制冷凝法: DL/T 1990—2019[S]. 2019. [5] 李小龙, 李军状, 段玖祥, 等. 燃煤电厂烟气中SO3协同控制情况及排放现状[J]. 中国电力, 2019, 52(10): 155-161 LI Xiaolong, LI Junzhuang, DUAN Jiuxiang, et al. SO3 cooperative control and emission situation in the flue gas of coal-fired power plant[J]. Electric Power, 2019, 52(10): 155-161 [6] 莫华, 朱杰. 燃煤电厂有色烟羽治理要点分析与环境管理[J]. 中国电力, 2019, 52(3): 10-15, 35 MO Hua, ZHU Jie. Analysis of key points on curbing colored plume in coal-fired power plants and environmental management[J]. Electric Power, 2019, 52(3): 10-15, 35 [7] 生态环境部, 国家发展和改革委员会, 工业和信息化部, 等. 关于印发《京津冀及周边地区2019—2020年秋冬季大气污染综合治理攻坚行动方案》的通知[Z]. 2019. [8] 杨爱勇, 舒喜, 申智勇, 等. 湿烟羽综合治理政策分析及建议[J]. 中国电力, 2020, 53(1): 130-139 YANG Aiyong, SHU Xi, SHEN Zhiyong, et al. Policy studies and advice on comprehensive control of wet plume[J]. Electric Power, 2020, 53(1): 130-139 [9] 朱法华, 孙尊强, 申智勇. 超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究[J]. 中国电力, 2019, 52(8): 1-7, 25 ZHU Fahua, SUN Zunqiang, SHEN Zhiyong. Cause analysis of colored smoke plume and related studies on economic and environmental benefits of its treatment technologies for ultra-low emission coal-fired power plants[J]. Electric Power, 2019, 52(8): 1-7, 25 [10] 谭厚章, 刘兴, 王文慧, 等. 超低排放背景下烟气消白技术路线研究[J]. 洁净煤技术, 2019, 25(2): 38-44 TAN Houzhang, LIU Xing, WANG Wenhui, et al. Research on wet flue gas plume elimination technology in the context of ultra low emission[J]. Clean Coal Technology, 2019, 25(2): 38-44 [11] 张悠. 烟气中SO3测试技术及其应用研究[D]. 杭州: 浙江大学, 2013. ZHANG You. Research and application of SO3 measurement in flue gas[D]. Hangzhou: Zhejiang University, 2013. [12] 王志轩. 超低排放后, 对火电厂“消白”是舍本逐末[J]. 环境经济, 2020(5): 50-55 [13] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138 LIU Hanxiao, CHEN Zhaomei, WANG Shaoquan, et al. Emission characteristics and removal technology of SO3 from coal-fired power plants[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1128-1138 [14] 王琳, 刘广建, 陈海平. 燃煤电厂烟气湿烟羽消除技术[J]. 中国电力, 2019, 52(10): 162-170 WANG Lin, LIU Guangjian, CHEN Haiping. Wet plume removal technologies for coal-fired power plants[J]. Electric Power, 2019, 52(10): 162-170 [15] 宋祖华, 严瑾, 秦承华. 硫酸雾测试方法若干问题思考[J]. 中国环境监测, 2020, 36(1): 131-137 SONG Zuhua, YAN Jin, QIN Chenghua. Consideration on problems about the determination of sulfuric acid mist[J]. Environmental Monitoring in China, 2020, 36(1): 131-137 [16] 陈圆圆. 固定源硫酸雾国内外采样方法优劣分析[J]. 中国环境监测, 2015, 31(4): 95-99 CHEN Yuanyuan. Comparison research on international sampling methods of sulfuric acid mist from stationary sources[J]. Environmental Monitoring in China, 2015, 31(4): 95-99 [17] United States Environmental Protection Agency. Determination of sulfuric acid mist and sulfur dioxide emissions from stationary sources: EPA-method 8[S]. 2017. [18] American National Standards Institute. Test method for determination of sulfuric acid mist in the workplace atmosphere (ion chromatographic): ANSI/ASTM D 4856—2001[S]. 2001. [19] 陈招妹, 刘含笑, 崔盈, 等. 燃煤电厂烟气中SO3的生成、危害、测试及排放特征研究[J]. 发电技术, 2019, 40(6): 564-569 CHEN Zhaomei, LIU Hanxiao, CUI Ying, et al. Study on generation, hazard, testing and emission characteristics of SO3 in flue gas of coal-fired power plants[J]. Power Generation Technology, 2019, 40(6): 564-569 [20] 陈威祥,郭俊,叶兴联,等. 燃煤烟气SO3 测试捕集效率试验研究[J]. 中国电力, 2019, 52(3): 43-48 CHEN Weixiang, GUO Jun, YE Xinglian, et al. Experimental study of the SO3 detection and collection efficiency in coal-fired flue gas[J]. Electric Power, 2019, 52(3): 43-48 [21] 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-50 MO Hua, ZHU Jie, HUANG Zhijie, et al. Test and study on SO3 removal performance of different wet flue gas desulferization technologies at ultra-low pollutants emission[J]. Electric Power, 2017, 50(3): 46-50 [22] 刘志超, 陶雷行, 岳春妹, 等. 百万燃煤机组超低排放改造环境减排效果评估[J]. 洁净煤技术, 2019, 25(增刊2): 53-56 LIU Zhichao, TAO Leixing, YUE Chunmei, et al. Evaluation on environmental emission reduction effect of million coal-fired units with ultra-low emissions transformation[J]. Clean Coal Technology, 2019, 25(S2): 53-56 [23] 赵毅, 韩立鹏. 超低排放燃煤电站三氧化硫的迁移和排放特征[J]. 环境科学学报, 2019, 39(11): 3702-3708 ZHAO Yi, HAN Lipeng. Migration and emission of sulfur trioxide in ultra-low emission coal-fired power plant[J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3702-3708 [24] 陶雷行, 翁杰, 李晓峰, 等. 燃煤烟气超低排放全流程协同削减三氧化硫效果分析[J]. 中国电力, 2018, 51(3): 177-184 TAO Leixing, WENG Jie, LI Xiaofeng, et al. Analysis on coordinated reduction of SO3 in whole process of ultra-low emission in coal-fired flue gas[J]. Electric Power, 2018, 51(3): 177-184 [25] 王科峰. 某300 MW燃煤机组超低排放测试试验[J]. 冶金能源, 2020, 39(3): 57-60 WANG Kefeng. Ultra-low emission test of a 300 MW coal-fired unit[J]. Energy for Metallurgical Industry, 2020, 39(3): 57-60 [26] 李小龙, 段玖祥, 李军状, 等. 燃煤电厂烟气中SO3控制技术及测试方法探讨[J]. 环境工程, 2017, 35(5): 98-102 LI Xiaolong, DUAN Jiuxiang, LI Junzhuang, et al. Control technology and determination methods of SO3 in flue gas from coal-fired power plants[J]. Environmental Engineering, 2017, 35(5): 98-102 [27] 肖雨亭, 贾曼, 徐莉, 等. 烟气中三氧化硫及硫酸雾滴的分析方法[J]. 环境科技, 2012, 25(5): 43-48 XIAO Yuting, JIA Man, XU Li, et al. The analytic method of sulfur trioxide and sulfuric acid mist in flue gas[J]. Environmental Science and Technology, 2012, 25(5): 43-48 |