[1] MÁRQUEZ F P G, TOBIAS A M, PéREZ G P M, PAPAELIAS M. Condition monitoring of wind turbines:techniques and methods[J]. Renewable Energy, 2012, 46:169-178. [2] 辛卫东, 马志勇, 滕伟, 等. 振动监测技术在风电机组齿轮箱故障诊断中的应用[J]. 中国电力, 2012, 45(5):77-80 XIN Weidong, MA Zhiyong, TENG Wei. Application of vibration monitoring technology in fault diagnosis of wind turbine gearbox[J]. Electric Power, 2012, 45(5):77-80 [3] 任彦忠, 王川. 某风电场风力发电机组振动故障探究[J]. 中国电力, 2011, 44(3):86-89 REN Yanzhong, WANG Chuan. Research on vibration fault of wind turbine in a wind farm[J]. Electric Power, 2011, 44(3):86-89 [4] 王惠中, 范少伟, 刘胜文. WiMAX在风力发电故障诊断系统中的应用[J]. 中国电力, 2011, 44(9):72-75 WANG Huizhong, FAN Shaowei, LIU Shengwen. Application of WiMAX in wind power fault diagnosis system[J]. Electric Power, 2011, 44(9):72-75 [5] 周继威, 张波, 王栋, 等. 风电机组综合状态在线监测与远程诊断中心的建立[J]. 中国电力, 2014, 47(3):19-23 ZHOU Jiwei, ZHANG Bo, WANG Dong, et al. Establishment of online monitoring and remote diagnosis center for integrated state of wind turbine[J]. Electric Power, 2014, 47(3):19-23 [6] 雷亚国, 何正嘉, 林京, 等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报, 2011, 47(19):59-67 LEI Yaguo, HE Zhengjia, LIN Jing, et al. Research advances of fault diagnosis technique for planetary gearboxes[J]. Journal of Mechanical Engineering, 2011, 47(19):59-67 [7] 汤宝平, 罗雷, 邓蕾, 等. 风电机组传动系统振动监测研究进展[J]. 振动、测试与诊断, 2017, 37(3):417-425, 622 TANG Baoping, LUO Lei, DENG Lei, et al. Research progress on vibration monitoring of wind turbine drive system[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3):417-425, 622 [8] 周雁冰, 柳亦兵, 赵秋丽, 等. 基于非高斯性强度的风电齿轮箱故障特征提取[J]. 动力工程学报, 2013, 33(11):865-870 ZHOU Yanbing, LIU Yibing, ZHAO Qiuli, et al. Fault feature extraction from wind turbine gearboxbased on non-gaussian intensity[J]. Journal of Chinese Society of Power Engineering, 2013, 33(11):865-870 [9] 丁显, 柳亦兵, 滕伟. 风电机组齿轮箱非平稳振动信号谱分析方法[J]. 中国电力, 2017, 50(12):153-158 DING Xian, LIU Yibing, TENG Wei. Spectrum analysis of nonstationary vibration signal for wind turbine gear box[J]. Electric Power, 2017, 50(12):153-158 [10] LIU W Y, ZHANG W H, HAN J G, et al. A new wind turbine fault diagnosis method based on the local mean decomposition[J]. Renewable Energy, 2012, 48(6):411-415. [11] AZEVEDO H D M D, ARAUJO A M, BOUCHONNEAU N. A review of wind turbine bearing condition monitoring:state of the art and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 56:368-379. [12] BURG J P. Maximum entropy spectral analysis[J]. Astronomy and Astrophysics Supplement, 1974(15):383-393. [13] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6):2616-2633. [14] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1):88-94 WANG Hongchao, CHEN Jin, DONG Guangming. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J]. Journal of Mechanical Engineering, 2013, 49(1):88-94 [15] 刘志川, 唐力伟, 曹立军. 基于MED及FSK的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2014, 33(14):137-142 LIU Zhichuan, TANG Liwei, CAO Lijun. Feature extraction of rolling bearing's weak fault based on MED and FSK[J]. Journal of Vibration And Shock, 2014, 33(14):137-142 [16] 张晓涛, 唐力伟, 王平, 等. 最小周期相关熵解卷积结合窄带解调的轴承复合故障诊断研究[J]. 振动工程学报, 2015, 28(4):666-672 ZHANG Xiaotao, TANG Lilei, WANG Ping, et al. The research of bearing multi-fault diagnosis based on minimum period correlated entropy deconvolution and narrowband demodulation[J]. Journal of Vibration Engineering, 2015, 28(4):666-672 [17] 崔伟成, 张征. 基于局部特征尺度分解与最小熵解卷积的轴承故障诊断[J]. 轴承, 2018(5):51-55 CUI Weicheng, ZHANG Zheng. Fault diagnosis for bearings based on LCD-MED[J]. Bearing, 2018(5):51-55 |