[1] |
龚胜, 石奇光, 冒玉晨, 等. 我国火电机组灵活性现状与技术发展[J]. 应用能源技术, 2017, 5(5):1-6 GONG Sheng, SHI Qiguang, MAO Yuchen, et al. Present situation and development of flexible technology of thermal power units in China[J]. Applied Energy Technology, 2017, 5(5):1-6
|
[2] |
苗强. 脱硝技术的现状及展望[J]. 洁净煤技术, 2017, 23(2):12-19 MIAO Qiang. Progress and prospects of denitration technology[J]. Clean Coal Technology, 2017, 23(2):12-19
|
[3] |
LOCKERT C A, HOEFLICH P C, SMITH L S. Dynamic control of SCR minimum operating temperature[C]//The 9th Convening of COAL-GEN. Charlotte, 2009.
|
[4] |
HIMES R. Summary of selective catalytic reduction system operational issues at low load[R]. Palo Alto, California:Electric Power Research Institute, 2010.
|
[5] |
赵宗让. 电厂锅炉SCR烟气脱硝系统设计优化[J]. 中国电力, 2005, 38(11):69-74 ZHAO Zongrang. Design optimization of SCR system for coal-fired boilers[J]. Electric Power, 2005, 38(11):69-74
|
[6] |
马双忱, 郭蒙, 宋卉卉, 等. 选择性催化还原工艺中硫酸氢铵形成机理及影响因素[J]. 热力发电, 2010, 43(2):75-78, 86 MA Shuangchen, GUO Meng, SONG Huihui, et al. Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Thermal Power Generation, 2010, 43(2):75-78, 86
|
[7] |
马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8):12-17 MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control[J]. Thermal Power Generation, 2010, 39(8):12-17
|
[8] |
MOSER R E. Benefits of effective SO3 removal in coal-fired power plants:Beyond opacity control[C]//Power Plant Air Pollutant Control Mega Symposium 2006. Baltimore, 2006:1-14.
|
[9] |
宋玉宝, 刘鑫辉, 何川, 等. SCR催化剂低负荷运行硫酸氢铵失活研究[J]. 中国电力, 2019, 52(1):144-150. SONG Yubao, LIU Xinhui, HE Chuan, et al. Study on the ammonium bisulfate deactivated SCR catalyst at low load operation[J]. Electric Power, 2019, 52(1):144-150.
|
[10] |
MUZIO L, BOGSETH S, HIMES R, et al. Ammonium bisulfate formation and reduced load SCR operation[J]. Fuel, 2017, 206:180-189.
|
[11] |
MENASHA J, DUNN-RANKIN Dn, MUZIO L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011, 90(7):2445-2453.
|
[12] |
BURKE J M, JOHNSON K L. Ammonium sulfate and bisulfate formation in air preheaters[R]. Austin:Radian Corporation, 1982.
|
[13] |
WEI J Y, MUZIO L J. Formation temperature of ammonium bisulfate at simulated air preheater conditions[C]//5th US combustion meeting. San Diego, 2007.
|
[14] |
SALEEM A, GALGANO M, INABA S. Hitachi-zosen DeNOx process for fossil fuel-fired boilers[C]//Proceedings of the Second NOx Control Technology Seminar. Denver, 1979.
|
[15] |
MATSUDA S, KAMO T, KATO A, et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(1):48-52.
|
[16] |
杨青山, 廖永进. 降低SCR脱硝装置最低投运负荷的策略研究[J]. 中国电力, 2014, 47(9):153-155 YANG Qingshan, LIAO Yongjin. The strategy on reduction of SCR minimum operation load[J]. Electric Power, 2014, 47(9):153-155
|
[17] |
章义发, 陆明智, 彭万生, 等. 哈尔滨600MW超临界锅炉低负荷期间脱硝运行研究[J]. 中国电业(技术版), 2014(4):36-38 ZHANG Yifa, LU Mingzhi, PENG Wansheng, et al. Research on harbin 600MW supercritical boiler denitrificating operation in low-load[J]. China Electric Power(Technology Edition), 2014(4):36-38
|
[18] |
俞立. 燃煤电厂锅炉宽负荷脱硝技改方案研究及应用[J]. 环境工程, 2017, 35(S):332-336 YU Li. Research and application of the technical scheme of wide load denitration in coal-fired power plant[J]. Environmental Engineering, 2017, 35(S):332-336
|
[19] |
徐昶, 徐良, 胡杰, 等. 国内首台火电机组省煤器分级改造提高SCR入口烟温实践[J]. 锅炉制造, 2014(6):42-23 XU Chang, XU Liang, HU Jie, et al. Practice of economizer classification and reconstruction in the first domestic thermal power plant to enhance SCR inlet gas temperature[J]. Boiler Manufacturing, 2014(6):42-23
|
[20] |
林紫荣. 600 MV超临界机组全负荷脱硝技术改造方案分析[J]. 科技与创新, 2018(4):124-125 LIN Zirong. Analysis on technical scheme of full load denitration in 600 MW supercritical coal-burning power unit[J]. Science and Technology & Innovation, 2018(4):124-125
|
[21] |
章斐然, 周克毅, 徐奇, 等. 燃煤机组低负荷运行SCR烟气脱硝系统应对措施[J]. 热力发电, 2016, 45(7):78-83 ZHANG Feiran, ZHOU Keyi, XU Qi, et al. Countermeasures for SCR denitration system of coal-fired unit during low-load operation[J]. Thermal Power Generation, 2016, 45(7):78-83
|
[22] |
郭贵有. 全负荷脱硝在火力发电厂的可行性探讨[J]. 科技展望, 2017, 27(16):91 GUO Guiyou. Feasibility discussion on full load denitration in coal-fired power plant[J]. Technology Outlook, 2017, 27(16):91
|
[23] |
齐玄, 齐继玄. 浅议燃煤机组低负荷脱硝改造方案[J]. 能源与节能, 2016(1):118-119 QI Xuan, QI Jixuan. Analysis of the denitration modification scheme of coal-fired unit under low load[J]. Energy and Conservation, 2016(1):118-119
|
[24] |
余岳溪, 廖永进, 范军辉, 等. 增设零号高压加热器控制SCR脱硝烟温对机组经济性影响的计算研究[J]. 广东电力, 2016, 29(9):7-12, 32 YU Yuexi, LIAO Yongjin, FAN Junhui, et al. Calculation analysis on influence on economy of the unit by additional No. 0 high pressure heater controlling SCR denitration flue gas temperature[J]. Guangdong Electric Power, 2016, 29(9):7-12, 32
|
[25] |
李千军, 刘光耀, 韩伟, 等. 采用喷射式热泵提高火电机组给水温度的理论研究[J]. 西安交通大学学报, 2013, 47(11):25-28, 47 LI Qianjun, LIU Guangyao, HAN Wei, et al. Heating feedwater of thermal power units using jet heat pump[J]. Journal of XI'AN Jiaotong University, 2013, 47(11):25-28, 47
|
[26] |
李冰心, 张国柱, 陈伟雄, 等. 采用蒸汽喷射器的低负荷给水加热系统变工况性能研究[J]. 西安交通大学学报, 2017, 51(1):65-71 LI Bingxin, ZHANG Guozhu, CHEN Weixiong, et al. Analysis on the performance of low-load feed water heating system with jet heat pump under variable working conditions[J]. Journal of XI'AN Jiaotong University, 2017, 51(1):65-71
|
[27] |
张国柱, 李冰心, 李亚维, 等. 采用给水加热实现660MW超临界机组宽负荷脱硝的理论研究[J]. 动力工程学报, 2018, 38(1):50-54 ZHANG Guozhu, LI Bingxin, LI Yawei, et al. Theoretical study on wide load denitration of a 660 MW supercritical unit by retrofitting the feedwater heating system[J]. Journal of Chinese Society of Power Engineering, 2018, 38(1):50-54
|
[28] |
PARENT R, RIVERA B. SCR reheat burners keep NOx in spec at low loads[J]. Power, 2015, 159(3):38-40.
|
[29] |
曲瑞阳. 新型宽温度窗口催化剂选择性催化还原NOx的机理研究[D]. 杭州:浙江大学, 2017.
|
[30] |
郭凤, 余剑, 牟洋, 等. 宽工作温度烟气脱硝催化剂制备及反应机理研究[J]. 燃料化学学报, 2014, 42(1):101-109 GUO Feng, YU Jian, MOU Yang, et al. Preparation of catalyst with wide working-temperature and the reaction mechanism of flue gas denitration[J]. Journal of Fuel Chemistry and Technology, 2014, 42(1):101-109
|
[31] |
ZHOU Chaoyang, ZHANG Linan, DENG Yue, et al. Research progress on ammonium bisulfate formation and control in the progress of selective catalytic reduction[J]. Environmental Progress & Sustainable Energy, 2016, 35(6):1664-1672.
|
[32] |
GRAY S, JARVIS J. SCR performance enhancement for NOx emission reductions SO3 removal is an important aspect of a successful emission reduction strategy[R]. Livonia:Worldwide Pollution Control Association, 2017:1-4.
|
[33] |
胡冬, 王海刚, 郭婷婷, 等. 燃煤电厂烟气SO3控制技术的研究及进展[J]. 科学技术与工程, 2015, 15(35):92-99 HU Dong, WANG Haigang, GUO Tingting, et al. Research and development of mitigating technology of SO3 in flue gas from coal power plants[J]. Science Technology and Engineering, 2015, 15(35):92-99
|
[34] |
姚宣, 杨建辉, 王洪亮, 等. 碱性吸收剂喷射脱除电厂烟气SO3技术及理论模型[J]. 中国电力, 2018, 51(4):130-135 YAO Xuan, YANG Jianhui, WANG Hongliang, et al. Theoretical model for SO3 removal from flue gas using alkali sorbent injection technology in power plant[J]. Electric Power, 2018, 51(4):130-135
|
[35] |
高智溥, 胡冬, 张志刚, 等. 碱性吸附剂SO3脱除技术在大型燃煤机组中的应用分析[J]. 中国电力, 2017, 50(7):102-108 GAO Zhipu, HU Dong, ZHANG Zhigang, et al. Application of SO3 removal with alkaline sorbent injection in large capacity coal-fired power plants[J]. Electric Power, 2017, 50(7):102-108
|
[36] |
LOCKERT C A, CHOTHANI C, FILIPPELLI G et al. Advances in hot side SO3 mitigation technology[C]//The 8th Power Plant Air Pollutant Control Mega Symposium. Baltimore, 2010:2553-2562.
|
[37] |
NORMAN J E, THOMAS M A. Dry sorbent injection at the SCR inlet for SO3 mitigation[C]//The 8th Power Plant Air Pollutant Control Mega Symposium. Baltimore, 2010:1289-1317.
|
[38] |
GHOREISHI, FARROKH, HEALY, et al. Cheat strategies for violating minimum operating temperature[R]. Palo Alto, California:Electric Power Research Institute, 2010.
|
[39] |
BERTOLE C J. Method for enhanced low load SCR operation[C]//Power Plant Pollutant Control and Carbon Management "MEGA" Symposium. Baltimore, 2016.
|
[40] |
王梦勤, 李楠, 郭长仕. 全负荷SCR脱硝烟温调节技术探讨[J]. 环境工程, 2017, 35(S1):67-70 WANG Mengqin, LI Nan, GUO Changshi. Investigation of regulation technology for SCR denitration under the full operation condition[J]. Environmental Engineering, 2017, 35(S1):67-70
|
[41] |
李德波, 曾庭华, 廖永进, 等. 600 MW电站锅炉SCR脱硝系统全负荷投运改造方案研究与工程实践[J]. 广东电力, 2016, 29(6):12-17 LI Debo, ZENG Tinghua, LIAO Yongjin, et al. Research on transformation scheme for full-load operation of SCR denitration system of 600 MW substation boiler and engineering practice[J]. Guangdong Electric Power, 2016, 29(6):12-17
|
[42] |
车聪斌, 张乐乐, 孟胜利. 零号高压加热器热经济性分析[J]. 山东工业技术, 2016(3):61-62 CHE Congbin, ZHANG Lele, MENG Shengli. Thermo-economic performance analysis on the No. 0 high pressure heater[J]. Shandong Industrial Technology, 2016(3):61-62
|
[43] |
刘启军, 李作兰, 方琪. 超超临界机组增设零号高压加热器研究[J]. 吉林电力, 2015, 43(4):1-4 LIU Qijun, LI Zuolan, FANG Qi. Research on adding No. 0 high-pressure heater to ultra supercritical unit[J]. Jilin Electric Power, 2015, 43(4):1-4
|
[44] |
晏敏, 张杨, 朱跃, 等. 超低排放形势下SCR脱硝工程改造现状的调查[J]. 中国电力, 2018, 51(11):163-167 YAN Min, ZHANG Yang, ZHU Yue, et al. Investigation on the status of the reconstructive projects for SCR De-NOx under the condition of ultra-low emission[J]. Electric Power, 2018, 51(11):163-167
|
[45] |
BENAJES J, PASTOR J V, GARCÍA A, et al. The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map[J]. Fuel, 2015, 159:952-961.
|
[46] |
CANOVA M, MIDLAM-MOHLER S, PISU P, et al. Model-based fault detection and isolation for a diesel lean NOx trap aftertreatment system[J]. Control engineering practice, 2010, 18(11):1307-1317.
|
[47] |
李帅英, 武宝会, 姚皓, 等. SCR催化剂活性评估对NOx超低排放影响[J]. 中国电力, 2017, 50(8):163-167 LI Shuaiying, WU Baohui, YAO Hao, et al. Effect of SCR catalyst activity evaluation on ultra-low emission of NOx[J]. Electric Power, 2017, 50(8):163-167
|