中国电力 ›› 2018, Vol. 51 ›› Issue (6): 102-106.DOI: 10.11930/j.issn.1004-9649.201705062

• 电网 • 上一篇    下一篇

粒子群优化的小波算法在避雷器老化诊断中的应用

梁可道   

  1. 国网重庆市电力公司 检修分公司, 重庆 400039
  • 收稿日期:2017-05-21 修回日期:2018-03-20 出版日期:2018-06-05 发布日期:2018-06-12
  • 作者简介:梁可道(1982-),男,工程师,从事高电压与绝缘技术研究,E-mail:lkd198211@163.com

Application of PSO-based Wavelet Algorithm in MOA Aging Diagnosis

LIANG Kedao   

  1. Power Grid Maintenance Branch of Chongqing Electric Power Corporation of State Grid, Chongqing 400039, China
  • Received:2017-05-21 Revised:2018-03-20 Online:2018-06-05 Published:2018-06-12

摘要: 为研究金属氧化物避雷器漏电流“消噪”问题,提出一种粒子群优化的小波消噪方法。首先利用db5小波对漏电流信号进行5层分解,其次设定待求解阈值,对信号进行重构,最后通过粒子群优化求解阈值实现消噪,并通过模拟MOA小电流区模型进行仿真验证。研究表明:使用db5小波对信号进行分解,并利用PSO对阈值进行优化求解,最终阈值c5c4c3c2c1分别为0.32,0.20,0.13,0.02和0.01。消噪后信噪比相对于单独使用平稳小波提升了7dB,说明利用结合粒子群优化的小波消噪算法进行消噪,消噪效果明显优于单独使用小波消噪算法。

关键词: 诊断, 老化, 粒子群算法, 小波算法, 消噪, 漏电流, 金属氧化物避雷器

Abstract: To solve the de-noise problem of metal oxide arrester (MOA) leakage current, a PSO (particle swarm optimization)-based wavelet de-noising algorithm is proposed. Firstly, the db5 wavelet is used to decompose the leakage current. Secondly, the threshold value is set and the processed wavelet coefficients are reconstructed. Finally, de-noising is achieved through PSO threshold value and the results are verified through MOA current modelling. Studies show that by decomposing the leakage current with db5 and optimizing the threshold value with PSO, the values of c5, c4, c3, c2 and c1 are found to be 0.32, 0.20, 0.13, 0.02 and 0.01, respectively. The SNR (signal to noise ratio) after de-noise is raised by 7dB compared with the result when just using the stationary wavelet. The results indicate that the de-noising effect of PSO-based wavelet de-noising algorithm is better than that of wavelet de-noising algorithm.

Key words: diagnose, aging, particle swarm, wavelet, de-noise, leakage current, MOA

中图分类号: