[1] 纪培栋. SCR催化剂SO2氧化机理及调控机制研究[D]. 杭州: 浙江大学, 2016.
[2] 朱崇兵, 金保升, 李峰, 翟俊霞. SO2氧化对SCR法烟气脱硝的影响[J]. 锅炉技术, 2008, 39(3): 68-72. ZHU Chongbing, JIN Baosheng, LI Feng, et al. Effect of SO2 oxidation on SCR-DeNOx [J]. Boiler Technology, 2008, 39(3): 68-72.
[3] MOSER R E. Moser. SO3's impacts on plant O&M: Part I[J]Power, 2006, 150(8): 40-42.
[4] 新井纪男. 燃烧生成物的发生与抑制技术[M]. 赵黛青, 赵哲石, 王昶, 等译. 北京: 科学出版社: 2001. 138-141.
[5] 魏宏鸽, 程雪山, 马彦斌, 朱跃. 燃煤烟气中SO3的产生与转化及其抑制对策探讨[J]. 发电与空调, 2012, 33(2): 1-4. WEI Hongge, CHENG Xueshan, MA Yanbin, et al. Some discussion about SO3's generation, transformation and its inhibiting methods in coal-fired flue gas[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2012, 33(2): 1-4.
[6] FLEIG D, ANDERSSON K, NORMANN F, et al. SO3 formation under oxyfuel combustion conditions[J]. Industrial & Engineering Chemistry Research, 2011, 50(50): 8505-8514.
[7] OFFEN G. Modeling of SO3 formation process in coal-fired boilers[R]. Palo Alto: EPRI, 2007.
[8] GREENWOOD N N, EARNSHAW A. Chemistry of the Elements [M]. 2nd ed. Butterworth-Heinemann, Oxford, U K, 1997: 321-332.
[9] 马双忱, 邓悦, 吴文龙, 等. SCR脱硝过程中硫酸氢铵形成特性实验研究[J]. 动力工程学报, 2016, 36(2): 143-150. MA Shuangchen, DENG Yue, WU Wenlong, et al. Experimental research on ABS formation characteristics in SCR denitrification process[J]. Journal Of Chinese Society Of Power Engineering, 2016, 36(2): 143-150.
[10] DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B: Environmental, 1998, 19(2): 103-117.
[11] 李峰. 以纳米TiO2为载体的燃煤烟气脱硝SCR催化剂的研究[D]. 南京: 东南大学, 2006.
[12] J BURKE J M, JOHNSON K L. Ammonium sulfate and bisulfate formation in air preheaters[R]. US EPA 600/7-82-025a, 1982.
[13] 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8): 12-17.
[14] Chetan Chothani, Robert Morey. ABS measurement for SCR NOx control and air heater protection[C]//2008 DOE-EPRI-EPA-A & WMA Power Plant Air Pollutant Control "Mega" Symposium, 2008, Baltimore.
[15] 姚宣, 郑鹏, 郑伟. SCR脱硝系统最低连续喷氨温度的研究[J]. 中国电力, 2016, 49(1): 146-150. YAO Xuan, ZHENG Peng, ZHENG Wei. Study on minimum continuous-operation temperature of SCR system[J]. Electric Power, 2016, 49(1): 146-150.
[16] 沈艳梅, 董琨, 崔智勇, 等. 低低温电除尘器设计烟温的理论计算及存在问题[J]. 中国电力, 2016, 49(7): 151-156. SHEN Yanmei, DONG Kun, CUI Zhiyong, et al. The theoretical calculation of designed temperature of flue gas in low-low temperature electrostatic precipitator and the existing problems[J]. Electric Power, 2016, 49(7): 151-156.
[17] NAKAYAMA Y, NAKAMURA S, TAKEUCHI Y, et al. MHI high efficiency system-proven technology for multi pollutant removal[R]. Hiroshima Research & Development Center. 2011: 1-11.
[18] 陈瑶姬, 孟 炜, 胡达清. 燃煤电厂烟气超低排放技术对三氧化硫脱除影响的研究[J]. 上海节能, 2015, 12: 657-660. CHEN Yaoji, MENG Wei, HU Daqing. Research on coal-fired power plant flue gas ultra low emission technology influence on sulfur trioxide removal[J]. Shanghai Energy Conservation.
[19] 张绪辉. 低低温电除尘器对细颗粒物及三氧化硫的协同脱除研究[D]. 北京: 清华大学, 2015.
[20] 滕农, 张运宇, 魏晗等. 石灰石/石膏湿法FGD 装置除尘效率和SO3脱除率探讨[J]. 电力环境保护[J]. 2008, 24(4): 27-28. TENG Nong, ZHANG Yunyu, WEI Han, et al. Discussion on ash removal efficiency and sulfur trioxide removal efficiency of WFGD system[j]. Electric Power Environmental Protection, 2008, 24(4): 27-28.
[21] 刘宇, 单广波, 闫松, 等. 燃煤锅炉烟气中SO3的生成、危害及控制技术研究进展[J]. 环境工程, 2016, 34(12): 93-97. LIU Yu, SHAN Guangbo, YAN Song, et al. Progress in research on formation, harm and control technique of SO3 in flue gas of coal-fired boiler[J]. Environmental Engineering, 2016, 34(12): 93-97. |