中国电力 ›› 2025, Vol. 58 ›› Issue (9): 124-137.DOI: 10.11930/j.issn.1004-9649.202503050
收稿日期:2025-03-17
发布日期:2025-09-26
出版日期:2025-09-28
作者简介:基金资助:Received:2025-03-17
Online:2025-09-26
Published:2025-09-28
Supported by:摘要:
新能源出力波动性及快速变化给新型电力系统的频率控制带来了新挑战。针对该问题,提出一种基于模型预测控制及随机优化技术的区域电网频率控制新方法。首先,构建基于预测信息的区域电网频率控制框架,将相邻区域频率波动引起的联络线功率扰动视为本区域扰动变量,从而实现本区域频率控制过程与相邻区域的有效解耦。其次,采用系统参数估计方法实现系统惯性常数的在线估计,并结合自适应在线核密度估计技术,建立机组惯性时间常数、负荷、新能源出力及相邻区域频率偏差的预测概率模型,实现各类不确定性因素的精确建模。再次,在此基础上,提出基于模型预测控制并计及多种不确定性因素的频率控制随机优化模型及快速求解算法。最后,采用修改的IEEE-39节点系统验证所提方法的有效性。算例结果表明,相较于确定性方法和仅考虑功率扰动不确定性的方法,所提方法的控制性能标准均值分别提高了14.98个百分点和11.38个百分点,区域控制偏差绝对值均值分别降低了5.30 MW和2.22 MW,证明了该新方法的有效性和先进性。所提模型及算法可为新型系统下的区域电网频率控制提供借鉴。
林济铿, 石涛. 基于模型预测控制的区域电网频率控制方法[J]. 中国电力, 2025, 58(9): 124-137.
LIN Jikeng, SHI Tao. Frequency Control Method for Regional Power Grids Based on Model Predictive Control[J]. Electric Power, 2025, 58(9): 124-137.
| 机组编号 | 容量/MW | 惯性时间 常数/s | 机组编号 | 容量/MW | 惯性时间 常数/s | |||||
| G1 | 1000 | 8.53 | G9 | 1000 | 6.45 | |||||
| G2 | 700 | 7.03 | G10 | 1000 | 6.20 | |||||
| G3 | 800 | 7.58 | W1 | 300 | 3.30 | |||||
| G4 | 800 | 6.86 | W2 | 400 | 3.50 | |||||
| G5 | 600 | 6.60 | W3 | 350 | 4.00 | |||||
| G6 | 800 | 6.48 | W4 | 300 | 3.10 | |||||
| G7 | 700 | 7.64 | BESS | 100 | 0 | |||||
| G8 | 700 | 5.43 |
表 1 发电机装机容量及惯性常数
Table 1 Capacity and inertia constant of generators
| 机组编号 | 容量/MW | 惯性时间 常数/s | 机组编号 | 容量/MW | 惯性时间 常数/s | |||||
| G1 | 1000 | 8.53 | G9 | 1000 | 6.45 | |||||
| G2 | 700 | 7.03 | G10 | 1000 | 6.20 | |||||
| G3 | 800 | 7.58 | W1 | 300 | 3.30 | |||||
| G4 | 800 | 6.86 | W2 | 400 | 3.50 | |||||
| G5 | 600 | 6.60 | W3 | 350 | 4.00 | |||||
| G6 | 800 | 6.48 | W4 | 300 | 3.10 | |||||
| G7 | 700 | 7.64 | BESS | 100 | 0 | |||||
| G8 | 700 | 5.43 |
| 机组 | 基准功率/ MW | 最小出力/ MW | 最大出力/ MW | 速率/ (MW·min–1) | ||||
| G2 | 520.8 | 200 | 680 | 15.0 | ||||
| G3 | 650.0 | 250 | 790 | 15.0 | ||||
| G4 | 100.0 | 250 | 790 | 25.0 | ||||
| G5 | 650.0 | 240 | 600 | 12.3 | ||||
| G7 | 260.0 | 50 | 700 | 20.0 | ||||
| G10 | 250.0 | 200 | 950 | 12.3 | ||||
| BESS | 0 | –100 | 100 | 60.0 |
表 2 机组出力参数
Table 2 Generator unit output parameters
| 机组 | 基准功率/ MW | 最小出力/ MW | 最大出力/ MW | 速率/ (MW·min–1) | ||||
| G2 | 520.8 | 200 | 680 | 15.0 | ||||
| G3 | 650.0 | 250 | 790 | 15.0 | ||||
| G4 | 100.0 | 250 | 790 | 25.0 | ||||
| G5 | 650.0 | 240 | 600 | 12.3 | ||||
| G7 | 260.0 | 50 | 700 | 20.0 | ||||
| G10 | 250.0 | 200 | 950 | 12.3 | ||||
| BESS | 0 | –100 | 100 | 60.0 |
| 参数 | 取值 | 参数 | 取值 | |||
| 0.05 | 0.05 | |||||
| 0.05 | 1 | |||||
| 0.05 | 5 | |||||
| 0.05 | 0.2 | |||||
| 0.08 | 5 | |||||
| 0.3 | 0.43 | |||||
| 0.33 | 0.05 | |||||
| 7 | 1 | |||||
| 0.3 | 0.2 | |||||
| 0.08 | 1 | |||||
| 0.2 | 2 | |||||
| 5 | 20 | |||||
| 0.43 |
表 3 机组调节系统参数
Table 3 Parameters of unit regulation systems
| 参数 | 取值 | 参数 | 取值 | |||
| 0.05 | 0.05 | |||||
| 0.05 | 1 | |||||
| 0.05 | 5 | |||||
| 0.05 | 0.2 | |||||
| 0.08 | 5 | |||||
| 0.3 | 0.43 | |||||
| 0.33 | 0.05 | |||||
| 7 | 1 | |||||
| 0.3 | 0.2 | |||||
| 0.08 | 1 | |||||
| 0.2 | 2 | |||||
| 5 | 20 | |||||
| 0.43 |
| 控制方法 | δCPS1/% | E(|EAC|)/MW | E(| | |||
| PI | 105.24 | 26.95 | ||||
| 确定性方法 | 181.10 | 8.78 | ||||
| 文献[ | 184.70 | 5.70 | ||||
| 本文方法 | 196.08 | 3.48 |
表 4 不同方法性能对比
Table 4 Performance comparison of different methods
| 控制方法 | δCPS1/% | E(|EAC|)/MW | E(| | |||
| PI | 105.24 | 26.95 | ||||
| 确定性方法 | 181.10 | 8.78 | ||||
| 文献[ | 184.70 | 5.70 | ||||
| 本文方法 | 196.08 | 3.48 |
| 考虑因素 | |EAC|/MW | | | δCPS1/% | |||||||
| 均值 | 最大值 | 均值 | 最大值 | |||||||
| 本文 | 3.48 | 11.65 | 196.08 | |||||||
| 负荷 | 9.74 | 31.98 | 189.04 | |||||||
| 新能源 | 4.08 | 14.32 | 195.68 | |||||||
| 惯量 | 10.80 | 25.59 | 189.51 | |||||||
| 频率 | 10.67 | 35.86 | 188.78 | |||||||
表 5 不同方法各指标对比
Table 5 Comparison of various indicators for different methods
| 考虑因素 | |EAC|/MW | | | δCPS1/% | |||||||
| 均值 | 最大值 | 均值 | 最大值 | |||||||
| 本文 | 3.48 | 11.65 | 196.08 | |||||||
| 负荷 | 9.74 | 31.98 | 189.04 | |||||||
| 新能源 | 4.08 | 14.32 | 195.68 | |||||||
| 惯量 | 10.80 | 25.59 | 189.51 | |||||||
| 频率 | 10.67 | 35.86 | 188.78 | |||||||
| 1 |
张磊, 马晓伟, 王满亮, 等. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58 (3): 8- 19.
DOI |
|
ZHANG Lei, MA Xiaowei, WANG Manliang, et al. Distributed collaborative control strategy for intra-regional AGC units in interconnected power system with renewable energy[J]. Electric Power, 2025, 58 (3): 8- 19.
DOI |
|
| 2 | ABAZARI A, MONSEF H, WU B. Load frequency control by de-loaded wind farm using the optimal fuzzy-based PID droop controller[J]. IET Renewable Power Generation, 2019, 13 (1): 180- 190. |
| 3 |
ZHANG CK, JIANG L, WU Q H, et al. Delay-dependent robust load frequency control for time delay power systems[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 2192- 2201.
DOI |
| 4 |
薛飞, 李宏强, 田蓓, 等. 储能辅助的孤岛微网自适应事件触发二次调频策略[J]. 中国电力, 2023, 56 (9): 196- 205.
DOI |
|
XUE Fei, LI Hongqiang, TIAN Bei, et al. Adaptive event-triggered secondary frequency control in islanded microgrids with auxiliary energy storage systems[J]. Electric Power, 2023, 56 (9): 196- 205.
DOI |
|
| 5 |
MI Y, FU Y, WANG CS, et al. Decentralized sliding mode load frequency control for multi-area power systems[J]. IEEE Transactions on Power Systems, 2013, 28 (4): 4301- 4309.
DOI |
| 6 |
PEDDAKAPU K, MOHAMED MR, SRINIVASARAO P, et al. A state-of-the-art review on modern and future developments of AGC/LFC of conventional and renewable energy-based power systems[J]. Renewable Energy Focus, 2022, 43, 146- 171.
DOI |
| 7 | 席磊, 杜雄, 李彦营, 等. 基于具有强化学习思想的集成学习自动发电控制算法[J]. 南方电网技术, 2023, 17 (7): 74- 82. |
| XI Lei, DU Xiong, LI Yanying, et al. Automatic generation control algorithm based on ensemble learning with the idea of reinforcement learning[J]. Southern Power System Technology, 2023, 17 (7): 74- 82. | |
| 8 | 陈宋宋, 张路涛, 周颖, 等. 面向新能源并网的分布式AGC协同算法[J]. 南方电网技术, 2023, 17 (4): 58- 68. |
| CHEN Songsong, ZHANG Lutao, ZHOU Yin, et al. Distributed AGC cooperative algorithm for new energy grid connection[J]. Southern Power System Technology, 2023, 17 (4): 58- 68. | |
| 9 | YU T, ZHOU B, CHAN K W, et al. Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q(λ) learning[J]. IEEE Transactions on Power Systems, 2011, 26 (3): 1272- 1282. |
| 10 |
张孝顺, 余涛, 唐捷. 基于分层相关均衡强化学习的CPS指令优化分配算法[J]. 电力系统自动化, 2015, 39 (8): 80- 86.
DOI |
|
ZHANG Xiaoshun, YU Tao, TANG Jie. Optimal CPS command dispatch based on hierarchically correlated equilibrium reinforcement learning[J]. Automation of Electric Power Systems, 2015, 39 (8): 80- 86.
DOI |
|
| 11 | 李彦营, 席磊, 郭宜果, 等. 基于权重双Q-时延更新学习算法的自动发电控制[J]. 中国电机工程学报, 2022, 42 (15): 5459- 5470. |
| LI Yanying, XI Lei, GUO Yiguo, et al. Automatic generation control based on the weighted double Q-delayed update learning algorithm[J]. Proceedings of the CSEE, 2022, 42 (15): 5459- 5470. | |
| 12 | 柳丹, 任建宇, 席磊, 等. 基于高维协同软演员-评论家的多智能体自动发电控制[J]. 南方电网技术, 2025, 19 (4): 93- 106. |
| LIU Dan, REN Jianyu , XI Lei, et al. Multi-agent automatic power generation control based on high dimensional collaborative soft actor-critic[J]. Southern Power System Technology, 2025, 19 (4): 93- 106. | |
| 13 |
YANG F, HUANG D, LI D, et al. Data-driven load frequency control based on multi-agent reinforcement learning with attention mechanism[J]. IEEE Transactions on Power Systems, 2023, 38 (6): 5560- 5569.
DOI |
| 14 | 刘向杰, 孔小兵. 电力工业复杂系统模型预测控制: 现状与发展[J]. 中国电机工程学报, 2013, 33 (5): 79- 85, 14. |
| LIU Xiangjie, KONG Xiaobing. Present situation and prospect of model predictive control application in complex power industrial process[J]. Proceedings of the CSEE, 2013, 33 (5): 79- 85, 14. | |
| 15 |
周念成, 付鹏武, 王强钢, 等. 基于模型预测控制的两区域互联电网AGC系统研究[J]. 电力系统保护与控制, 2012, 40 (22): 46- 51.
DOI |
|
ZHOU Niancheng, FU Pengwu, WANG Qianggang, et al. Research on AGC of two area interconnected power system based on MPC[J]. Power System Protection and Control, 2012, 40 (22): 46- 51.
DOI |
|
| 16 |
LIU XJ, ZHANG Y, LEE KY, et al. Coordinated distributed MPC for load frequency control of power system with wind farms[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (6): 5140- 5150.
DOI |
| 17 |
虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略[J]. 电力系统自动化, 2019, 43 (12): 36- 43.
DOI |
|
YU Linbo, KOU Peng, FENG Yutao, et al. Model predictive control strategy for combined wind-storage system to participate in frequency response[J]. Automation of Electric Power Systems, 2019, 43 (12): 36- 43.
DOI |
|
| 18 | 孙舶皓, 汤涌, 叶林, 等. 基于随机分层分布式模型预测控制的风电集群频率控制规划方法[J]. 中国电机工程学报, 2019, 39 (20): 5903- 5914. |
| SUN Bohao, TANG Yong, YE Lin, et al. A programming method for wind power cluster frequency control based on S-H-DMPC[J]. Proceedings of the CSEE, 2019, 39 (20): 5903- 5914. | |
| 19 |
YANG DY, WANG B, CAI GW, et al. Inertia-adaptive model predictive control-based load frequency control for interconnected power systems with wind power[J]. IET Generation, Transmission and Distribution, 2020, 14 (22): 5029- 5036.
DOI |
| 20 |
LIU LK, HU ZC, MUJEEB A. Automatic generation control considering uncertainties of the key parameters in the frequency response model.[J]. IEEE Transactions on Power Systems, 2022, 37 (6): 4605- 4617.
DOI |
| 21 | SHEN Y K, WU W C, SUN S M. Stochastic model predictive control based fast-slow coordination automatic generation control[J]. IEEE Transactions on Power Systems, 2023, 39 (3): 1- 13. |
| 22 | 张怡, 刘向杰. 互联电力系统鲁棒分布式模型预测负荷频率控制[J]. 控制理论与应用, 2016, 33 (5): 621- 630. |
| ZHANG Y, LIU X J. Robust distributed model predictive control for load frequency control of uncertain power systems[J]. Control Theory & Applications, 2016, 33 (5): 621- 630. | |
| 23 | 杨冬锋, 朱军豪, 姜超, 等. 基于分布式模型预测的高比例风电系统多源协同负荷频率控制策略[J]. 电网技术, 2024, 48 (7): 2804- 2814. |
| YANG D F, ZHU J H, JIANG C, et al. High proportion wind power system multi-source collaborate load frequency control strategy based on distributed model prediction[J]. Power System Technology, 2024, 48 (7): 2804- 2814. | |
| 24 | 刘家豪, 王程, 毕天姝. 面向新能源电力系统频率时空动态的节点等效惯量指标及其应用[J]. 中国电机工程学报, 2023, 43 (20): 7773- 7789. |
| LIU Jiahao, WANG Cheng, BI Tianshu. Node equivalent inertia index for temporal-spatial frequency dynamics of renewable energy power system and its applications[J]. Proceedings of the CSEE, 2023, 43 (20): 7773- 7789. | |
| 25 | 夏飞, 袁博, 彭道刚, 等. 基于信息量准则的锂离子电池变阶RC等效电路模型建模及优化方法[J]. 中国电机工程学报, 2018, 38 (21): 6441- 6451, 6506. |
| XIA Fei, YUAN Bo, PENG Daogang, et al. Modeling and optimization of variable-order RC equivalent circuit model for lithium ion batteries based on information criterion[J]. Proceedings of the CSEE, 2018, 38 (21): 6441- 6451, 6506. | |
| 26 |
ZHANG JB, XU HC. Online Identification of Power System Equivalent Inertia Constant[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8098- 8107.
DOI |
| 27 | 邓齐林, 邱天宇, 申富饶, 等. 一种自适应在线核密度估计方法[J]. 软件学报, 2020, 31 (4): 1173- 1188. |
| DENG Qilin, QIU Tianyu, SHEN Furao, et al. Adaptive online kernel density estimation method[J]. Journal of Software, 2020, 31 (4): 1173- 1188. | |
| 28 | FLAM J T. The linear model under Gaussian mixture inputs: selected problems in communications[D]. Trondheim: Norwegian University of Science and Technology, 2013. |
| 29 | 严儒井. 多重不确定性下区域综合能源系统的供需协调规划研究[D]. 北京: 华北电力大学(北京), 2022: 31–33. |
| YAN Rujing. Research on supply and demand coordination planning of regional integrated energy system under multiple uncertainties[D]. Beijing: North China Electric Power University, 2022: 31–33. | |
| 30 | 黄越辉, 曲凯, 李驰, 等. 基于K-means MCMC算法的中长期风电时间序列建模方法研究[J]. 电网技术, 2019, 43 (7): 2469- 2476. |
| HUANG Yuehui, QU Kai, LI Chi, et al. Research on modeling method of medium- and long-term wind power time series based on K-means MCMC algorithm[J]. Power System Technology, 2019, 43 (7): 2469- 2476. | |
| 31 |
李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42 (2): 84- 93.
DOI |
|
LI Shichun, SONG Qiushuang, XUE Zhenyao, et al. Inertia estimation of new energy power system with virtual inertia response of wind power[J]. Electric Power Engineering Technology, 2023, 42 (2): 84- 93.
DOI |
| [1] | 满林坤, 吴珂鸣, 迟成, 尤金石, 赵梓潼, 张亚健. 计及储能随机接入退出行为的互联电网自适应负荷频率控制策略[J]. 中国电力, 2025, 58(9): 164-174. |
| [2] | 高芳杰, 孙玉杰, 李忆, 乐鹰, 张继广, 许传博, 刘敦楠. 计及海上风电制氢的海岛多能微网鲁棒优化调度[J]. 中国电力, 2025, 58(7): 68-79. |
| [3] | 孔令国, 田杨进, 康建东, 方磊, 刘闯, 蔡国伟. 考虑多电解槽协同的海上独立能源岛不确定性双层优化配置[J]. 中国电力, 2025, 58(7): 80-90, 104. |
| [4] | 张博航, 戚军, 谢路耀, 张有兵, 张博扬. 考虑需求侧响应的互联电力系统分布式模型预测频率控制[J]. 中国电力, 2025, 58(7): 105-114. |
| [5] | 周楷, 陶正顺, 潘庭龙, 许德智. 基于CCS-MPC的储能锂电池组均衡控制策略[J]. 中国电力, 2025, 58(7): 177-186. |
| [6] | 翟哲, 陈梓煜, 刘起兴, 梁彦杰, 李智勇. 计及风险管理的分布式资源聚合商电力市场交易模型[J]. 中国电力, 2025, 58(6): 56-66, 155. |
| [7] | 檀勤良, 贺嘉明, 吕函谕, 丁毅宏. 考虑成本不确定性的发电企业低碳技术采纳决策优化研究[J]. 中国电力, 2025, 58(5): 62-73. |
| [8] | 陈铭宏天, 耿江海, 赵雨泽, 许鹏, 韩雨珊, 张育铭, 张子沫. 基于两阶段随机优化的电氢耦合微电网周运行策略[J]. 中国电力, 2025, 58(5): 82-90. |
| [9] | 王力, 蒋宇翔, 曾祥君, 赵斌, 李均昊. 基于深度强化学习的孤岛微电网二次频率控制[J]. 中国电力, 2025, 58(5): 176-188. |
| [10] | 汪进锋, 李金鹏, 许银亮, 刘海涛, 何锦雄, 许建远. 考虑不确定性和绿证交易的虚拟电厂与配电网分布式优化[J]. 中国电力, 2025, 58(4): 21-30, 192. |
| [11] | 许常昊, 关伟东, 王越, 张金帅, 王鹏, 周宁, 尚博文. 全功率小型变速抽水蓄能机组双层MPC虚拟惯量控制策略[J]. 中国电力, 2025, 58(2): 216-226. |
| [12] | 杨雄, 李娟, 姜云龙, 李红梅, 徐婉云, 李晓露, 郭瑞鹏. 基于负荷准线重构的配电网需求侧资源集群优化调度方法[J]. 中国电力, 2025, 58(10): 163-170. |
| [13] | 汪泽州, 毛琳明, 潘克勤, 储建新, 陈刚. 计及分布式光伏出力不确定性的低压配电网仿射潮流计算方法[J]. 中国电力, 2025, 58(10): 188-194. |
| [14] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
| [15] | 齐国民, 李天野, 于洪, 卢博伦, 马宝中, 张文欣, 吴恩同, 肖先瑶. 基于MPC的户用光-储系统容量配置及运行优化模型[J]. 中国电力, 2025, 58(1): 185-195. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编
