中国电力 ›› 2025, Vol. 58 ›› Issue (8): 118-129.DOI: 10.11930/j.issn.1004-9649.202503038
刘航1(), 申皓1, 纪陵2, 钟永洁2, 陈嘉瑞1, 余洋3(
)
收稿日期:
2025-03-14
发布日期:
2025-08-26
出版日期:
2025-08-28
作者简介:
基金资助:
LIU hang1(), SHEN hao1, JI Ling2, ZHONG Yongjie2, CHEN Jiarui1, YU Yang3(
)
Received:
2025-03-14
Online:
2025-08-26
Published:
2025-08-28
Supported by:
摘要:
短流程钢铁企业作为用能大户,其可调潜力巨大,为改善电网调峰状况提供了重要资源。但其生产工序紧密关联、订单波动大,导致用电不规律,参与电网调峰面临诸多困难。为此,提出计及最大需量基于改进资源任务网(resource task network,RTN)模型的短流程钢铁企业双层优化调峰策略,助力短流程钢铁企业参与电网调峰。首先,设计基于时间窗节点的改进资源任务网络,准确刻画单条生产线在加工不同类型订单时设备间物料和时间资源的耦合关系,保证订单分配及调度策略的可行性。其次,结合企业多生产线实际情况对企业订单进行分配,并提出考虑最大需量的供需互动双层优化调峰模型,利用自适应粒子群和Cplex求解器的混合求解算法进行求解。最后,根据某实际短流程钢铁企业数据,设置3个仿真场景对调度策略进行验证。结果表明,所提策略有效平滑了负荷曲线,同时降低企业用电成本。
中图分类号:
刘航, 申皓, 纪陵, 钟永洁, 陈嘉瑞, 余洋. 计及最大需量基于改进RTN模型的短流程钢铁企业双层优化调峰策略[J]. 中国电力, 2025, 58(8): 118-129.
LIU hang, SHEN hao, JI Ling, ZHONG Yongjie, CHEN Jiarui, YU Yang. Bi-level Optimization Peak-shaving Strategy for Short-process Steel Enterprises Considering Maximum Demand Based on an Improved RTN Model[J]. Electric Power, 2025, 58(8): 118-129.
设备 | 额定功率/MW | |
EAF | 85 | |
LF | 2 | |
CC | 7 |
表 1 短流程钢铁企业设备参数
Table 1 Equipment parameters of short-process steel enterprises
设备 | 额定功率/MW | |
EAF | 85 | |
LF | 2 | |
CC | 7 |
生产线编号 | 加工时间窗 | 运输时间窗 | 冷却时间 | |||
1 | [16,36] | [2,4] | 2 | |||
2 | [24,40] | [3,6] | 2 | |||
3 | [24,48] | [4,8] | 2 |
表 2 各生产线生产时间窗(15 min)
Table 2 Production time window for each production line (15 min)
生产线编号 | 加工时间窗 | 运输时间窗 | 冷却时间 | |||
1 | [16,36] | [2,4] | 2 | |||
2 | [24,40] | [3,6] | 2 | |||
3 | [24,48] | [4,8] | 2 |
订单编号 | 平均日钢材量/吨 | 平均日电力需求/(MW·h) | ||
1 | 433.4 | |||
2 | 362.4 | |||
3 | 355.6 | |||
4 | 265.3 | |||
5 | 245.3 | |||
6 | 242.7 | |||
7 | 242.6 | |||
8 | 237.5 | |||
9 | 216.3 |
表 3 短流程钢铁企业订单数据
Table 3 Order data for short-process steel enterprises
订单编号 | 平均日钢材量/吨 | 平均日电力需求/(MW·h) | ||
1 | 433.4 | |||
2 | 362.4 | |||
3 | 355.6 | |||
4 | 265.3 | |||
5 | 245.3 | |||
6 | 242.7 | |||
7 | 242.6 | |||
8 | 237.5 | |||
9 | 216.3 |
场景 | 场景说明 | |
1 | 仅考虑EAF功率特性,以用电成本最小为目标安排生产 | |
2 | 在场景1基础上,基于本文RTN模型考虑整体生产流程,以用电成本最小为目标安排生产 | |
3 | 在场景2基础上,基于改进的RTN模型考虑多生产线订单分配策略的调度方式,以用电成本最小为目标安排生产 |
表 4 3种场景
Table 4 Three scheduling scenarios
场景 | 场景说明 | |
1 | 仅考虑EAF功率特性,以用电成本最小为目标安排生产 | |
2 | 在场景1基础上,基于本文RTN模型考虑整体生产流程,以用电成本最小为目标安排生产 | |
3 | 在场景2基础上,基于改进的RTN模型考虑多生产线订单分配策略的调度方式,以用电成本最小为目标安排生产 |
电价构成 | 计费方法 | 价格 | ||
分时电价/(元·(kW·h)−1) | 峰 | 1.00 | ||
平 | 0.60 | |||
谷 | 0.30 | |||
基本电价/(元·(kW·月)−1) | 按最大需量 | 35 |
表 5 电价实际数据
Table 5 Actual two-part tariff data
电价构成 | 计费方法 | 价格 | ||
分时电价/(元·(kW·h)−1) | 峰 | 1.00 | ||
平 | 0.60 | |||
谷 | 0.30 | |||
基本电价/(元·(kW·月)−1) | 按最大需量 | 35 |
1 | 孙浩男, 杜鹏, 刘念, 等. 大规模风光储场站群功率跟踪优化控制实时仿真[J]. 电力建设, 2024, 45 (8): 62- 74. |
SUN Haonan, DU Peng, LIU Nian, et al. Real-time simulation of optimal power tracking control for large-scale wind-photovoltaic-storage power station clusters[J]. Electric Power Construction, 2024, 45 (8): 62- 74. | |
2 |
梁珩, 黄耕, 侯宾, 等. 工业用户连续参与需求响应的用户基线负荷精准计算方法[J]. 中国电力, 2024, 57 (3): 34- 42.
DOI |
LIANG Heng, HUANG Geng, HOU Bin, et al. Accurate estimation method of customer baseline load for continuous participation of industrial users in demand response[J]. Electric Power, 2024, 57 (3): 34- 42.
DOI |
|
3 |
刘晓琳, 王兆杰, 高峰, 等. 分时电价下的高耗能企业发用电响应[J]. 电力系统自动化, 2014, 38 (8): 41- 49.
DOI |
LIU Xiaolin, WANG Zhaojie, GAO Feng, et al. Response behaviors of power generation and consumption in energy intensive enterprise under time-of-use price[J]. Automation of Electric Power Systems, 2014, 38 (8): 41- 49.
DOI |
|
4 |
黄蔚亮, 苏志鹏, 梁欣怡, 等. 考虑可调市场和外部需求响应的虚拟电厂优化运行策略[J]. 中国电力, 2023, 56 (12): 156- 163.
DOI |
HUANG Weiliang, SU Zhipeng, LIANG Xinyi, et al. Optimal operation strategy for virtual power plant considering regulation market and external demand response[J]. Electric Power, 2023, 56 (12): 156- 163.
DOI |
|
5 |
CHEN R Z, SUN H B, GUO Q L, et al. Profit-seeking energy-intensive enterprises participating in power system scheduling: Model and mechanism[J]. Applied Energy, 2015, 158, 263- 274.
DOI |
6 |
ORCAJO G A, DIEZ J R, CANO J M, et al. Coordinated management of electrical energy in a steelworks and a wind farm[J]. IEEE Transactions on Industry Applications, 2022, 58 (4): 5488- 5502.
DOI |
7 |
GAJIC D, HADERA H, ONOFRI L, et al. Implementation of an integrated production and electricity optimization system in melt shop[J]. Journal of Cleaner Production, 2017, 155, 39- 46.
DOI |
8 |
KONG M, PEI J, XU J, et al. A robust optimization approach for integrated steel production and batch delivery scheduling with uncertain rolling times and deterioration effect[J]. International Journal of Production Research, 2020, 58 (17): 5132- 5154.
DOI |
9 |
刘树, 王元超, 石山, 等. 大型工业企业生产负荷平抑优化策略[J]. 电力系统及其自动化学报, 2017, 29 (10): 138- 144.
DOI |
LIU Shu, WANG Yuanchao, SHI Shan, et al. Optimization strategy of production load leveling for large industrial enterprises[J]. Proceedings of the CSU-EPSA, 2017, 29 (10): 138- 144.
DOI |
|
10 |
DING Y M, HONG S H, LI X H. A demand response energy management scheme for industrial facilities in smart grid[J]. IEEE Transactions on Industrial Informatics, 2014, 10 (4): 2257- 2269.
DOI |
11 |
HUANG C, ZHANG H C, SONG Y H, et al. Demand response for industrial micro-grid considering photovoltaic power uncertainty and battery operational cost[J]. IEEE Transactions on Smart Grid, 2021, 12 (4): 3043- 3055.
DOI |
12 | DALLE AVE G, HARJUNKOSKI I, ENGELL S. A non-uniform grid approach for scheduling considering electricity load tracking and future load prediction[J]. Computers & Chemical Engineering, 2019, 129, 106506. |
13 | DING Y M, HONG S H. A model of demand response energy management system in industrial facilities[C]//2013 IEEE International Conference on Smart Grid Communications (SmartGridComm). Vancouver, BC, Canada. IEEE, 2013: 241–246. |
14 | 王卿然, 谢国辉, 张粒子. 含风电系统的发用电一体化调度模型[J]. 电力系统自动化, 2011, 35 (5): 15- 18, 30. |
WANG Qingran, XIE Guohui, ZHANG Lizi. An integrated generation-consumption dispatch model with wind power[J]. Automation of Electric Power Systems, 2011, 35 (5): 15- 18, 30. | |
15 | 梁望, 钱斌, 胡蓉, 等. 两阶段智能优化算法求解紧凑型带钢生产热轧调度问题[J]. 计算机集成制造系统, 2025, 31 (1): 102- 116. |
LIANG Wang, QIAN Bin, HU Rong, et al. Two stage bee colony algorithm for hot rolling scheduling problem in compact strip production[J]. Computer Integrated Manufacturing Systems, 2025, 31 (1): 102- 116. | |
16 |
KOWALSKI M, KUGI A, STEINBOECK A. Job scheduling for a multi-line steel hot rolling mill with selectable furnaces[J]. IFAC-PapersOnLine, 2023, 56 (2): 5376- 5381.
DOI |
17 |
KOWALSKI M, STEINBOECK A, KUGI A. Scheduling multiple groups of jobs for a multi-line steel hot rolling mill[J]. IFAC-PapersOnLine, 2022, 55 (21): 168- 173.
DOI |
18 |
TAN M, YANG H L, DUAN B, et al. Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing[J]. Mathematical Problems in Engineering, 2017, 2017 (1): 1048081.
DOI |
19 |
HU Z B, HE D F, SONG W, et al. Model and algorithm for planning hot-rolled batch processing under time-of-use electricity pricing[J]. Processes, 2020, 8 (1): 42.
DOI |
20 |
齐彩娟, 陈宝生, 韦冬妮, 等. 考虑主从博弈定价模式的共享储能分布鲁棒优化配置方法研究[J]. 中国电力, 2024, 57 (7): 40- 53.
DOI |
QI Caijuan, CHEN Baosheng, WEI Dongni, et al. Distributionally robust optimal configuration for shared energy storage based on Stackelberg game pricing model[J]. Electric Power, 2024, 57 (7): 40- 53.
DOI |
|
21 |
黄治宁. 面向订单的钢铁企业生产成本管理优化分析[J]. 冶金与材料, 2023, 15 (6): 142- 144.
DOI |
22 |
杨益, 彭涛, 许娟, 等. 基于负荷曲线的最大需量估算方法研究[J]. 安徽电气工程职业技术学院学报, 2023, 28 (4): 33- 38.
DOI |
YANG Yi, PENG Tao, XU Juan, et al. Research on estimation methods of maximum demand based on load curve[J]. Journal of Anhui Electrical Engineering Professional Technique College, 2023, 28 (4): 33- 38.
DOI |
|
23 | 张鼎衢, 钱斌, 杨路, 等. 基于模型驱动的电力系统安全稳定分析与控制策略[J/OL]. 中国电力, 2024: 1–10. (2024-11-08). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDL20241106003&dbname=CJFD&dbcode=CJFQ. |
ZHANG Dingqu, QIAN Bin, YANG Lu, et al. Data driven analysis and control of power system security and stability[J/OL]. Electric Power, 2024: 1–10. (2024-11-08). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDL20241106003&dbname=CJFD&dbcode=CJFQ. | |
24 | 束娜, 江山, 刘春伶, 等. 计及灵活性资源多时间尺度协调互济的电-气-热综合能源系统优化调度[J]. 电力建设, 2024, 45 (12): 3- 15. |
SHU Na, JIANG Shan, LIU Chunling, et al. Optimal scheduling of electricity-gas-heat integrated energy system with flexible resources in multiple time scales[J]. Electric Power Construction, 2024, 45 (12): 3- 15. |
[1] | 孔令国, 田杨进, 康建东, 方磊, 刘闯, 蔡国伟. 考虑多电解槽协同的海上独立能源岛不确定性双层优化配置[J]. 中国电力, 2025, 58(7): 80-90, 104. |
[2] | 周飞航, 王灏, 王海利, 王萌, 金耀杰, 李重春, 张忠德, 王鹏. 基于多智能体强化学习的电-碳-绿证耦合市场下多市场主体行为研究[J]. 中国电力, 2025, 58(4): 44-55. |
[3] | 张旭, 王淳, 胡奕涛, 陈锐凯, 刘昆, 郭志东, 钟俊勋. 面向短时过载及长期轻载的配变侧储能配置与调度双层优化[J]. 中国电力, 2025, 58(1): 174-184. |
[4] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[5] | 周健, 冯楠, 季怡萍, 冯煜尧, 王帅, 李少岩. 考虑源网协同支撑作用的含新能源电力系统网架重构决策优化方法[J]. 中国电力, 2024, 57(10): 150-157. |
[6] | 王世杰, 冯天波, 孙宁, 何可, 李嘉文, 杨程, 崔昊杨. 考虑电-气-热耦合和需求响应的虚拟电厂优化调度策略[J]. 中国电力, 2024, 57(1): 101-114. |
[7] | 薛贵元, 吴垠, 诸晓骏, 谈健, 明昊. 计及用能权配额约束的发电商竞价策略双层优化方法[J]. 中国电力, 2023, 56(5): 51-61. |
[8] | 卢炳文, 魏震波, 魏平桉, 郭毅, 胡蓉. 考虑多重区间不确定性的用户侧综合能源系统双层优化配置[J]. 中国电力, 2022, 55(3): 193-202. |
[9] | 谭鸣骢, 王玲玲, 蒋传文, 刘航航, 巫里尔沙, 唐炯. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32-44. |
[10] | 白中华, 李强, 陈晶, 袁福生, 徐文波, 孙奉昌, 余宗泽. 储能电站在多站融合场景下的运行策略优化[J]. 中国电力, 2021, 54(6): 136-144. |
[11] | 张海静, 杨雍琦, 赵昕, 徐楠, 李晨辉, 薛万磊. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54(4): 141-150. |
[12] | 刘鑫, 吴红斌, 王鲸杰, 卢俊花. 市场环境下考虑需求响应的虚拟电厂经济调度[J]. 中国电力, 2020, 53(9): 172-180. |
[13] | 寇凌峰, 季宇, 吴鸣, 牛耕. 多能互补系统全寿命周期优化配置方法[J]. 中国电力, 2020, 53(12): 75-82. |
[14] | 赵楠, 王蓓蓓. 计及多类型需求响应资源的配电网分布式电源优化配置[J]. 中国电力, 2019, 52(11): 51-59,67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||