中国电力 ›› 2025, Vol. 58 ›› Issue (5): 91-101.DOI: 10.11930/j.issn.1004-9649.202401114
收稿日期:
2024-01-25
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
HU Changsheng(), BAI Zhijun, ZHANG Zhang, LI Jiankang, SHEN Ziyang(
)
Received:
2024-01-25
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
随着电制氢负荷的大规模并网和电网运行方式的频繁变化,电制氢设备集群的接入方式和布点位置对电网稳定性影响日益显著,为此,提出一种计及静态电压稳定裕度约束的电制氢容量和布点规划方法。首先,基于碱性电解槽的稳态模型分析其运行特性,构建无变压器直挂型电解槽并网接入方式,将制氢系统的内部电流参与到连续潮流计算的牛顿-拉夫逊法迭代,由PV曲线得到当前系统的静态电压稳定裕度;基于净现值评价指标,建立电制氢系统全寿命周期经济性分析模型;基于静态电压稳定裕度约束和系统净现值最大的目标,提出电解槽制氢系统容量规划模型,决策变量为电解槽总容量;基于功率传输分布因子评价指标,构建系统关键节点处的电解槽布点规划模型,并计算各节点权重,从而得到电解槽制氢系统容量配置结果;最后,采用IEEE 39节点系统进行算例分析,结果表明,所提方法在兼顾经济性的同时保证了大规模电制氢负荷的并网稳定性,有效消纳了系统冗余配置,平衡潮流分布。
胡常胜, 摆志俊, 张章, 李建康, 沈子洋. 计及静态电压稳定裕度的电制氢容量和布点规划研究[J]. 中国电力, 2025, 58(5): 91-101.
HU Changsheng, BAI Zhijun, ZHANG Zhang, LI Jiankang, SHEN Ziyang. Research on Capacity and Distribution Planning of Electric Hydrogen Production Considering Static Voltage Stability Margin[J]. Electric Power, 2025, 58(5): 91-101.
节点数 | 支路数 | PQ节点数 | PV节点数 | 基准容量/MW | ||||
39 | 46 | 29 | 9 | 100 |
表 1 IEEE 39节点系统网架基本信息
Table 1 Basic information of IEEE 39 node system grid
节点数 | 支路数 | PQ节点数 | PV节点数 | 基准容量/MW | ||||
39 | 46 | 29 | 9 | 100 |
PV节点 | PQ节点 | PV节点 | PQ节点 | |||
Bus-30 | Bus-2 | Bus-36 | Bus-23 | |||
Bus-32 | Bus-10 | Bus-37 | Bus-25 | |||
Bus-33 | Bus-19 | Bus-38 | Bus-29 | |||
Bus-34 | Bus-20 | Bus-39 | Bus-1 | |||
Bus-35 | Bus-22 |
表 2 IEEE 39节点系统网架PV-PQ节点对
Table 2 PV-PQ node pair of IEEE 39 node system grid
PV节点 | PQ节点 | PV节点 | PQ节点 | |||
Bus-30 | Bus-2 | Bus-36 | Bus-23 | |||
Bus-32 | Bus-10 | Bus-37 | Bus-25 | |||
Bus-33 | Bus-19 | Bus-38 | Bus-29 | |||
Bus-34 | Bus-20 | Bus-39 | Bus-1 | |||
Bus-35 | Bus-22 |
项目 | 上限 | 备注 | ||
电解槽制氢投资成本/(元·kW–1) | 3 500 | |||
氢气售价/(元·kg–1) | 20 | |||
制氢电价/(元·(kW | 0.42 | 当地发电价格 | ||
制氢水价/(元·t–1) | 3.05 | 当地工业水价 | ||
制氢初始效率/((kW | 4.5 | |||
电解槽制氢系统效率衰减/% | 10 | 假设平均衰减0.5%/年 | ||
政府补贴/(元·(kW | 0.25 | |||
电解槽制氢系统寿命/年 | 10 | |||
电解槽年等效利用小时数/h | 2 000 | |||
电压效率和氢气产生效率之间的 转换率/% | 5 | |||
氢气向水的转化率/% | 70 | |||
5 |
表 3 电解槽制氢系统经济性计算参数
Table 3 Economic calculation parameters of hydrogen production system in electrolytic cell
项目 | 上限 | 备注 | ||
电解槽制氢投资成本/(元·kW–1) | 3 500 | |||
氢气售价/(元·kg–1) | 20 | |||
制氢电价/(元·(kW | 0.42 | 当地发电价格 | ||
制氢水价/(元·t–1) | 3.05 | 当地工业水价 | ||
制氢初始效率/((kW | 4.5 | |||
电解槽制氢系统效率衰减/% | 10 | 假设平均衰减0.5%/年 | ||
政府补贴/(元·(kW | 0.25 | |||
电解槽制氢系统寿命/年 | 10 | |||
电解槽年等效利用小时数/h | 2 000 | |||
电压效率和氢气产生效率之间的 转换率/% | 5 | |||
氢气向水的转化率/% | 70 | |||
5 |
节点名 | 功率传输分布因子 | 排名 | 节点名 | 功率传输分布因子 | 排名 | |||||
Bus-1 | –0.0 118 | 24 | Bus-16 | 0.1 532 | 5 | |||||
Bus-2 | –0.7 801 | 20 | Bus-17 | –0.2 791 | 16 | |||||
Bus-3 | –0.0 152 | 11 | Bus-18 | –0.0 565 | 13 | |||||
Bus-4 | –0.7 434 | 19 | Bus-19 | –0.0 159 | 27 | |||||
Bus-5 | –1.8 500 | 23 | Bus-20 | –0.0 125 | 25 | |||||
Bus-6 | 2.3 404 | 2 | Bus-21 | 0.0 706 | 8 | |||||
Bus-7 | –0.6 438 | 18 | Bus-22 | 0.0 099 | 7 | |||||
Bus-8 | 2.4 628 | 1 | Bus-23 | –0.0 224 | 29 | |||||
Bus-9 | –1.0 384 | 22 | Bus-24 | –0.1 175 | 14 | |||||
Bus-10 | 0.0 968 | 9 | Bus-25 | –0.0 186 | 28 | |||||
Bus-11 | 0.7 410 | 3 | Bus-26 | –0.1 873 | 15 | |||||
Bus-12 | –0.0 271 | 10 | Bus-27 | –0.0 232 | 12 | |||||
Bus-13 | –0.9 995 | 21 | Bus-28 | 0.0 370 | 6 | |||||
Bus-14 | –0.4 609 | 17 | Bus-29 | –0.0 139 | 26 | |||||
Bus-15 | 0.4 580 | 4 |
表 4 功率传输分布因子计算结果
Table 4 Calculation results of power transmission distribution factor
节点名 | 功率传输分布因子 | 排名 | 节点名 | 功率传输分布因子 | 排名 | |||||
Bus-1 | –0.0 118 | 24 | Bus-16 | 0.1 532 | 5 | |||||
Bus-2 | –0.7 801 | 20 | Bus-17 | –0.2 791 | 16 | |||||
Bus-3 | –0.0 152 | 11 | Bus-18 | –0.0 565 | 13 | |||||
Bus-4 | –0.7 434 | 19 | Bus-19 | –0.0 159 | 27 | |||||
Bus-5 | –1.8 500 | 23 | Bus-20 | –0.0 125 | 25 | |||||
Bus-6 | 2.3 404 | 2 | Bus-21 | 0.0 706 | 8 | |||||
Bus-7 | –0.6 438 | 18 | Bus-22 | 0.0 099 | 7 | |||||
Bus-8 | 2.4 628 | 1 | Bus-23 | –0.0 224 | 29 | |||||
Bus-9 | –1.0 384 | 22 | Bus-24 | –0.1 175 | 14 | |||||
Bus-10 | 0.0 968 | 9 | Bus-25 | –0.0 186 | 28 | |||||
Bus-11 | 0.7 410 | 3 | Bus-26 | –0.1 873 | 15 | |||||
Bus-12 | –0.0 271 | 10 | Bus-27 | –0.0 232 | 12 | |||||
Bus-13 | –0.9 995 | 21 | Bus-28 | 0.0 370 | 6 | |||||
Bus-14 | –0.4 609 | 17 | Bus-29 | –0.0 139 | 26 | |||||
Bus-15 | 0.4 580 | 4 |
节点名 | 权重 | 排名 | ||
Bus-6 | 0.4 872 | 2 | ||
Bus-8 | 0.5 128 | 1 |
表 5 关键节点归一化权重
Table 5 Key node normalization
节点名 | 权重 | 排名 | ||
Bus-6 | 0.4 872 | 2 | ||
Bus-8 | 0.5 128 | 1 |
项目 | 规划结果 | 项目 | 规划结果 | |||
电解槽总容量/MW | Bus-6电解槽规划容量/MW | 584.64 | ||||
净现值/亿元 | Bus-8电解槽规划容量/MW | 615.36 | ||||
一次投资成本/亿元 | 151.889 | 电解槽布点位置 | Bus-6, Bus-8 |
表 6 电制氢系统容量和布点规划结果
Table 6 Capacity and layout planning results of hydrogen production system by electricity
项目 | 规划结果 | 项目 | 规划结果 | |||
电解槽总容量/MW | Bus-6电解槽规划容量/MW | 584.64 | ||||
净现值/亿元 | Bus-8电解槽规划容量/MW | 615.36 | ||||
一次投资成本/亿元 | 151.889 | 电解槽布点位置 | Bus-6, Bus-8 |
1 | 袁铁江, 蒋平, 孙谊媊, 等. 风储一体化电站容量双层优化规划研究[J]. 高电压技术, 2015, 41 (10): 3204- 3212. |
YUAN Tiejiang, JIANG Ping, SUN Yiqian, et al. Research on bi-level capacity programming optimization for the integration of wind farm energy storage power station[J]. High Voltage Engineering, 2015, 41 (10): 3204- 3212. | |
2 | 任大伟, 肖晋宇, 侯金鸣, 等. 计及多种灵活性约束和基于时序模拟的广域电力系统源-网-储协同规划方法[J]. 中国电力, 2022, 55 (1): 55- 63. |
REN Dawei, XIAO Jinyu, HOU Jinming, et al. Wide-area power system generation-transmission-storage coordinated planning method based on multiple flexibility constraints and time-series simulation[J]. Electric Power, 2022, 55 (1): 55- 63. | |
3 | 顾慧杰, 彭超逸, 孙书豪, 等. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57 (5): 505- 512. |
GU Huijie, PENG Chaoyi, SUN Shuhao, et al. A short-term production simulation model of wind-PV-hydrogen-pumped storage zero carbon power system[J]. Journal of Shanghai Jiao Tong University, 2023, 57 (5): 505- 512. | |
4 |
潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47 (10): 1- 13.
DOI |
PAN Guangsheng, GU Zhongfan, LUO Enbo, et al. Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 2023, 47 (10): 1- 13.
DOI |
|
5 |
OLABI A G, BAHRI A S, ABDELGHAFAR A A, et al. Large-vscale hydrogen production and storage technologies: current status and future directions[J]. International Journal of Hydrogen Energy, 2021, 46 (45): 23498- 23528.
DOI |
6 | 宫娅宁, 苏舒, 林湘宁, 等. 独立光伏发电储能系统能量管理与经济调度研究[J]. 电力科学与技术学报, 2017, 32 (2): 3- 9, 30. |
GONG Yaning, SU Shu, LIN Xiangning, et al. Study on energy management and economic dispatch of stand-alone photovoltaic generation system with hybrid energy storage[J]. Journal of Electric Power Science and Technology, 2017, 32 (2): 3- 9, 30. | |
7 | 崔丽瑶, 刘怀东, 刘豪, 等. 基于氢能经济的电网大规模风电消纳模式[J]. 电力系统及其自动化学报, 2022, 34 (2): 108- 115. |
CUI Liyao, LIU Huaidong, LIU Hao, et al. Large-scale wind power accommodation mode of power grid based on hydrogen energy economy[J]. Proceedings of the CSU-EPSA, 2022, 34 (2): 108- 115. | |
8 |
李广, 樊艳芳. 基于自适应功率阈值的电网辅助光伏制氢控制策略及容量优化配置[J]. 可再生能源, 2022, 40 (9): 1215- 1222.
DOI |
LI Guang, FAN Yanfang. Grid-assisted photovoltaic hydrogen production control strategy and capacity optimization configuration based on adaptive power threshold[J]. Renewable Energy Resources, 2022, 40 (9): 1215- 1222.
DOI |
|
9 | 陈维荣, 傅王璇, 韩莹, 等. 计及需求侧的风-光-氢多能互补微电网优化配置[J]. 西南交通大学学报, 2021, 56 (3): 640- 649. |
CHEN Weirong, FU Wangxuan, HAN Ying, et al. Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J]. Journal of Southwest Jiaotong University, 2021, 56 (3): 640- 649. | |
10 |
HADIDIAN MOGHADDAM M J, KALAM A, NOWDEH S A, et al. Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm[J]. Renewable Energy, 2019, 135, 1412- 1434.
DOI |
11 |
JAHANNOOSH M, NOWDEH S A, NADERIPOUR A, et al. New hybrid meta-heuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability[J]. Journal of Cleaner Production, 2021, 278, 123406.
DOI |
12 |
YATES J, DAIYAN R, PATTERSON R, et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis[J]. Cell Reports Physical Science, 2020, 1 (10): 100209.
DOI |
13 |
MOKHTARA C, NEGROU B, SETTOU N, et al. Design optimization of grid-connected PV-hydrogen for energy prosumers considering sector-coupling paradigm: case study of a university building in Algeria[J]. International Journal of Hydrogen Energy, 2021, 46 (75): 37564- 37582.
DOI |
14 |
ZHANG Y S, HUA Q S, SUN L, et al. Life cycle optimization of renewable energy systems configuration with hybrid battery/hydrogen storage: a comparative study[J]. Journal of Energy Storage, 2020, 30, 101470.
DOI |
15 |
邓智宏, 江岳文. 考虑制氢效率特性的风氢系统容量优化[J]. 可再生能源, 2020, 38 (2): 259- 266.
DOI |
DENG Zhihong, JIANG Yuewen. Optimal sizing of a wind-hydrogen system under consideration of the efficiency characteristics of electrolysers[J]. Renewable Energy Resources, 2020, 38 (2): 259- 266.
DOI |
|
16 | 贾雨龙, 米增强, 刘力卿, 等. 分布式储能系统接入配电网的容量配置和有序布点综合优化方法[J]. 电力自动化设备, 2019, 39 (4): 1- 7, 16. |
JIA Yulong, MI Zengqiang, LIU Liqing, et al. Comprehensive optimization method of capacity configuration and ordered installation for distributed energy storage system accessing distribution network[J]. Electric Power Automation Equipment, 2019, 39 (4): 1- 7, 16. | |
17 |
URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100 (2): 410- 426.
DOI |
18 |
SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43 (45): 20332- 20345.
DOI |
19 |
URSÚA A, BARRIOS E L, PASCUAL J, et al. Integration of commercial alkaline water electrolysers with renewable energies: limitations and improvements[J]. International Journal of Hydrogen Energy, 2016, 41 (30): 12852- 12861.
DOI |
20 |
ZHANG C, WANG J Y, REN Z B, et al. Wind-powered 250 kW electrolyzer for dynamic hydrogen production: a pilot study[J]. International Journal of Hydrogen Energy, 2021, 46 (70): 34550- 34564.
DOI |
21 |
牛萌, 肖宇, 刘锋, 等. 可再生能源接入对氢储能系统的影响及控制策略[J]. 电力建设, 2018, 39 (4): 28- 34.
DOI |
NIU Meng, XIAO Yu, LIU Feng, et al. Influences of renewable energy on hydrogen storage system and its control strategy[J]. Electric Power Construction, 2018, 39 (4): 28- 34.
DOI |
|
22 |
PROOST J. State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings[J]. International Journal of Hydrogen Energy, 2019, 44 (9): 4406- 4413.
DOI |
23 |
ZHANG H, YUAN T J. Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations[J]. Applied Energy, 2022, 324, 119760.
DOI |
24 |
LEE B, HEO J, CHOI N H, et al. Economic evaluation with uncertainty analysis using a Monte-Carlo simulation method for hydrogen production from high pressure PEM water electrolysis in Korea[J]. International Journal of Hydrogen Energy, 2017, 42 (39): 24612- 24619.
DOI |
25 |
李娟, 陈继军, 司双. 连续潮流与免疫遗传算法结合的静态电压稳定裕度计算[J]. 电力系统保护与控制, 2010, 38 (18): 24- 27, 32.
DOI |
LI Juan, CHEN Jijun, SI Shuang. Calculation of static voltage stability margin based on continuation power flow and immune genetic algorithm[J]. Power System Protection and Control, 2010, 38 (18): 24- 27, 32.
DOI |
|
26 | 李滨, 谢旭槟, 梁振成, 等. “双高”电力系统集中式储能选址定容规划策略[J]. 电力系统及其自动化学报, 2024, 36 (9): 31- 43. |
LI Bin, XIE Xubin, LIANG Zhencheng et al. Centralized energy storage site selection and capacity planning strategy for power system with high shares of renewables and power electronics[J]. Proceedings of the CSU-EPSA, 2024, 36 (9): 31- 43. | |
27 | 吴昊. 计及电网结构和状态的电网关键节点与关键线路的识别研究[D]. 南昌: 南昌大学, 2020. |
WU Hao. Research on the recognition of key nodes and lines in power grid considering power grid structure and state[D]. Nanchang: Nanchang University, 2020. |
[1] | 白望望, 杨德州, 李万伟, 王涛, 张耀忠. 基于HC-MOPSO的储能电站两阶段选址定容方法[J]. 中国电力, 2024, 57(12): 148-156. |
[2] | 修晓青, 李相俊, 王佳蕊, 谢志佳, 吕项羽. 基于等效能折算的储能电站广义成本研究[J]. 中国电力, 2022, 55(4): 192-202. |
[3] | 袁铁江, 万志, 王进君, 张舵, 蒋东方. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109. |
[4] | 周立立, 向月, 陈凌天. 基于风险-收益分析的用户侧储能容量经济配置研究[J]. 中国电力, 2021, 54(9): 187-197. |
[5] | 晏敏, 张杨, 郭博闻, 朱跃. 基于全寿命周期成本的SCR脱硝系统优化分析[J]. 中国电力, 2021, 54(3): 191-196. |
[6] | 陈海华. 风电场采用非晶合金变压器设计探讨[J]. 中国电力, 2016, 49(4): 79-82. |
[7] | 刘洋,苏浩益. 基于盲数理论的智能变电站全寿命周期成本估算[J]. 中国电力, 2016, 49(3): 83-87. |
[8] | 陈源,王璐,黄友珍,汤清岚,徐玉琴,洪千里,赵蓓蓓. 基于多级可拓评价法的配电网规划经济效益评估模型[J]. 中国电力, 2016, 49(10): 159-164. |
[9] | 岳增武,李辛庚,樊志彬,郭凯. 输电铁塔腐蚀防护全寿命周期成本[J]. 中国电力, 2015, 48(2): 150-155. |
[10] | 乔国华,郭路遥,吴一敌,李晶,贾朝阳,郝锋,詹翔灵,王亚运. 基于遗传优化最小二乘支持向量机的变电站全寿命周期成本预测模型[J]. 中国电力, 2015, 48(11): 142-148. |
[11] | 徐玉琴, 任正, 詹翔灵, 李通, 胡伟涛, 乔国华, 谢庆. 基于物元模型的电力变压器全寿命周期成本风险评价[J]. 中国电力, 2014, 47(12): 127-132. |
[12] | 苏卫华, 管俊, 杨熠娟, 李倩玉, 高赐威. 全寿命周期成本电网规划的灵敏度分析模型[J]. 中国电力, 2014, 47(11): 127-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||