中国电力 ›› 2025, Vol. 58 ›› Issue (5): 82-90.DOI: 10.11930/j.issn.1004-9649.202408035

• 新能源与储能 • 上一篇    下一篇

基于两阶段随机优化的电氢耦合微电网周运行策略

陈铭宏天1(), 耿江海1(), 赵雨泽1, 许鹏2, 韩雨珊3, 张育铭1, 张子沫1   

  1. 1. 华北电力大学 电力工程系,河北 保定 071003
    2. 国网杭州供电公司电力调度控制中心,浙江 杭州 310000
    3. 国网新源集团有限公司检修分公司,北京 100053
  • 收稿日期:2024-08-12 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    陈铭宏天(2001),男,硕士研究生,从事电力设备状态检测和电力系统优化调度研究,E-mail:cmht20230630@163.com
    耿江海(1980),男,通信作者,博士,高级工程师(教授级),从事高电压试验技术和外绝缘技术研究,E-mail:gengjh@ncepu.edu.cn
  • 基金资助:
    河北省在读研究生创新能力培养资助项目(CXZZBS2024168)。

Two-Stage Stochastic Optimization Based Weekly Operation Strategy for Electric-Hydrogen Coupled Microgrid

CHEN Minghongtian1(), GENG Jianghai1(), ZHAO Yuze1, XU Peng2, HAN Yushan3, ZHANG Yuming1, ZHANG Zimo1   

  1. 1. Department of Electric Power Engineering, North China Electric Power University, Baoding 071003, China
    2. State Grid Hangzhou Electric Power Supply Company, Electric Power Dispatch and Control Center, Hangzhou 310000, China
    3. State Grid Xinyuan Group Co., Ltd. Maintenance Branch, Beijing 100053, China
  • Received:2024-08-12 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by Hebei Provincial Funding Project for Cultivating Innovation Ability of Postgraduate Students (No.CXZZBS2024168).

摘要:

为充分发挥氢能的中长期存储优势,提出了一种基于场景法随机优化模型的电氢耦合微电网两阶段周优化调度策略。首先,建立微电网中电氢耦合设备的数学模型;其次,以最小化周运行成本为目标,分别设置电、氢储能的周期为周和日,建立基于周预测数据的微电网第1阶段周调度模型。然后,利用预测误差的典型场景衡量风电不确定性,以日运行期望成本与两阶段储氢罐状态偏差惩罚之和最小为目标,构建考虑不确定性的第2阶段日前调度模型,并通过滚动求解,得到最终周运行方案。最后,算例表明,所提策略能降低微电网运行成本并提高能量利用率。

关键词: 电氢耦合, 氢储能, 多时间尺度, 随机优化, 场景法

Abstract:

To fully capitalize on the medium- and long-term storage benefits of hydrogen energy, a two-stage weekly optimization scheduling strategy for electric-hydrogen coupled microgrids is proposed, utilizing a scenario-based stochastic optimization model. Firstly, the mathematical models for the electric-hydrogen coupled equipment within the microgrid are developed. Secondly, aiming to minimize the weekly operation cost, the cycles of electric and hydrogen energy storage are set as weekly and daily, respectively, and the first-stage weekly scheduling model of the microgrid based on weekly prediction data is established. Then, to account for the uncertainty in wind power generation, typical scenarios of prediction errors are introduced. A day-ahead scheduling model considering uncertainty is constructed, aiming to minimize the sum of the daily expected operational cost and the deviation penalty for the two-stage hydrogen storage tank's state of charge. The final weekly operation scheme is determined through rolling optimization. Finally, case studies demonstrate that the proposed strategy effectively reduces the microgrid's operating costs and enhances energy utilization.

Key words: electric-hydrogen coupling, hydrogen energy storage, multi-time scale, stochastic optimization, scenario-based method