中国电力 ›› 2025, Vol. 58 ›› Issue (12): 37-49.DOI: 10.11930/j.issn.1004-9649.202508019
• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇
收稿日期:2025-08-11
修回日期:2025-09-10
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
SHEN Yichun(
), PENG Hongyi(
), ZHANG Zhaocheng, YAN Mingyu(
)
Received:2025-08-11
Revised:2025-09-10
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
针对氢-电-热综合能源微网群跨区域协同运行计算量大、隐私保护难的问题,提出了一种基于多面体等值聚合的非迭代式分散协同调度方法。首先,构建氢-电-热综合能源微网的聚合等值模型,将各系统用一台等值发电机与一台等值储能表征。接着,提出一种多面体收缩方法,将等值发电机与等值储能的可行域映射到较低维度。最后,将收缩后的可行域转化为可以直接用求解器处理的线性约束条件,嵌入到氢-电-热综合能源微网群协同优化调度问题中,求解获得各微网的最优调度决策。所提多面体等值聚合方法规避了各微网之间交互用户需求等隐私信息,并规避了传统分布式算法存在的耗时迭代过程。在二区域6-6-8节点氢-电-热综合能源多微网互联系统和二区域40-33-13节点氢-电-热综合能源多微网互联系统上对所提模型与方法进行了测试,验证了其有效性、隐私保护性等优势。
沈祎淳, 彭弘毅, 张钊诚, 晏鸣宇. 基于多面体等值聚合的氢-电-热综合能源微网群非迭代式分散协同调度方法[J]. 中国电力, 2025, 58(12): 37-49.
SHEN Yichun, PENG Hongyi, ZHANG Zhaocheng, YAN Mingyu. A Non-iterative Decentralized Collaborative Scheduling Method for Hydrogen-Electricity-Heat Integrated Energy Microgrid Clusters Based on Polyhedral Equivalent Aggregation[J]. Electric Power, 2025, 58(12): 37-49.
| 算例 | 总成本/美元 | 微网1-2联络线 传输功率/kW | 弃光量/kW | |||||
| 微网1 | 微网2 | |||||||
| Ⅰ | 0 | 0 | 71.168 | |||||
| Ⅱ | 102.178 | 0 | 0 | |||||
| Ⅲ | 64.556 | 0 | 0 | |||||
表 1 氢-电-热综合能源微网群的不同联系方式比较
Table 1 Comparison of different interconnection architectures for the hydrogen-electricity-heat integrated energy microgrid cluster
| 算例 | 总成本/美元 | 微网1-2联络线 传输功率/kW | 弃光量/kW | |||||
| 微网1 | 微网2 | |||||||
| Ⅰ | 0 | 0 | 71.168 | |||||
| Ⅱ | 102.178 | 0 | 0 | |||||
| Ⅲ | 64.556 | 0 | 0 | |||||
图 5 算例Ⅰ和算例Ⅱ的不同区域在各时段下的储能充放电功率对比
Fig.5 Comparison of energy storage charging and discharging power across different areas of Case Ⅰ and Case Ⅱ at each time period
| 算例 | 电力系统成本/ 美元 | 热力系统成本/ 美元 | 氢气系统成本/ 美元 | 总CO2排 放量/kg | ||||||||||
| 微网1 | 微网2 | 微网1 | 微网2 | 微网1 | 微网2 | |||||||||
| Ⅰ | ||||||||||||||
| Ⅱ | ||||||||||||||
| Ⅲ | ||||||||||||||
表 2 氢-电-热综合能源微网群的不同子微网成本比较
Table 2 Cost comparison of sub-microgrids for hydrogen-electricity-heat integrated energy microgrid cluster
| 算例 | 电力系统成本/ 美元 | 热力系统成本/ 美元 | 氢气系统成本/ 美元 | 总CO2排 放量/kg | ||||||||||
| 微网1 | 微网2 | 微网1 | 微网2 | 微网1 | 微网2 | |||||||||
| Ⅰ | ||||||||||||||
| Ⅱ | ||||||||||||||
| Ⅲ | ||||||||||||||
| 求解方式 | 微网1 | 微网2 | 总成本 | |||
| 集中求解 | ||||||
| 等值聚合 |
表 3 不同求解方法下所求成本
Table 3 Costs obtained under different solution methods 单位:美元
| 求解方式 | 微网1 | 微网2 | 总成本 | |||
| 集中求解 | ||||||
| 等值聚合 |
| 求解方式 | 微网1 | 微网2 | ||||||
| G1 | G2 | G1 | G2 | |||||
| 集中求解 | 55 | 35 | 55 | 35 | ||||
| 等值聚合 | 55 | 35 | 55 | 35 | ||||
表 4 不同求解方法下各燃气轮机出力比较
Table 4 Comparison of gas turbine output power under different solution methods 单位:kW
| 求解方式 | 微网1 | 微网2 | ||||||
| G1 | G2 | G1 | G2 | |||||
| 集中求解 | 55 | 35 | 55 | 35 | ||||
| 等值聚合 | 55 | 35 | 55 | 35 | ||||
| 算例 | 变量数 | 约束数 | 计算时间/s | 总成本/美元 | ||||
| A | 205 | 6.532 | ||||||
| B | 205 | 133.286 | ||||||
| C | 1.772 |
表 5 算例间变量数、约束数、求解时间与总成本对比
Table 5 Comparison of number of variables, number of constraints, solution time and total cost among cases
| 算例 | 变量数 | 约束数 | 计算时间/s | 总成本/美元 | ||||
| A | 205 | 6.532 | ||||||
| B | 205 | 133.286 | ||||||
| C | 1.772 |
| 算例 | 求解时间/s | |
| A | 6.772 | |
| B | 131.243 | |
| C | 1.434 |
表 6 调整新能源渗透比例后算例间求解时间对比
Table 6 Comparison of solution time among cases after adjusting the new energy penetration proportion
| 算例 | 求解时间/s | |
| A | 6.772 | |
| B | 131.243 | |
| C | 1.434 |
| 计算方法 | 计算时间/s | |||||||
| 单时段无 潮流约束 | 24时段无 潮流约束 | 单时段有 潮流约束 | 24时段有 潮流约束 | |||||
| 降维投影法 | 35.44 | 513.67 | 278.29 | |||||
| 等值聚合法 | 5.62 | 51.23 | 30.46 | 332.46 | ||||
表 7 不同方法不同场景下的求解耗时
Table 7 Computation time of different methods under different scenarios
| 计算方法 | 计算时间/s | |||||||
| 单时段无 潮流约束 | 24时段无 潮流约束 | 单时段有 潮流约束 | 24时段有 潮流约束 | |||||
| 降维投影法 | 35.44 | 513.67 | 278.29 | |||||
| 等值聚合法 | 5.62 | 51.23 | 30.46 | 332.46 | ||||
| 1 | 张丝钰, 张宁, 代红才, 等. 可再生能源电解水制氢系统规划优化与生产模拟[J]. 中国电力, 2024, 57 (4): 52- 60. |
| ZHANG Siyu, ZHANG Ning, DAI Hongcai, et al. Optimization and simulation on hydrogen production system using water electrolysis powered by renewable energy[J]. Electric Power, 2024, 57 (4): 52- 60. | |
| 2 | 徐连兵. 我国氢能源利用前景与发展战略研究[J]. 洁净煤技术, 2022, 28 (9): 1- 10. |
| XU Lianbing. Research on the prospect and development strategy of hydrogen energy in China[J]. Clean Coal Technology, 2022, 28 (9): 1- 10. | |
| 3 |
LI J R, LIN J, SONG Y H, et al. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (4): 1672- 1683.
DOI |
| 4 | 邓卜元, 袁至, 李骥. 考虑氢储能的富氧燃烧碳捕集电厂热电联合优化调度[J]. 中国电力, 2025, 58 (4): 159- 169. |
| DENG Buyuan, YUAN Zhi, LI Ji. Optimized coordinated scheduling of oxy-fuel combustion carbon capture combined heat and power plant considering hydrogen energy storage[J]. Electric Power, 2025, 58 (4): 159- 169. | |
| 5 |
URBANUCCI L, TESTI D. Optimal integrated sizing and operation of a CHP system with Monte Carlo risk analysis for long-term uncertainty in energy demands[J]. Energy Conversion and Management, 2018, 157, 307- 316.
DOI |
| 6 | 张雨檬, 李鑫, 王宁玲, 等. 计及多重不确定性的氢-电耦合热电联供系统配置优化[J]. 太阳能学报, 2025, 46 (9): 399- 407. |
| ZHANG Yumeng, LI Xin, WANG Ningling, et al. Optimization of hydrogen-electric coupled combined heat and power system with multiple uncertainties[J]. Acta Energiae Solaris Sinica, 2025, 46 (9): 399- 407. | |
| 7 | 张继红, 阚圣钧, 化玉伟, 等. 基于氢气储能的热电联供微电网容量优化配置[J]. 太阳能学报, 2022, 43 (6): 428- 434. |
| ZHANG Jihong, KAN Shengjun, HUA Yuwei, et al. Capacity optimization of chp microgrid based on hydrogen energy storage[J]. Acta Energiae Solaris Sinica, 2022, 43 (6): 428- 434. | |
| 8 | 孙璐瑶, 陈来军, 熊宇峰, 等. 考虑光热集热单元的氢储能热电联供综合能源系统容量优化配置[J]. 电力自动化设备, 2023, 43 (12): 70- 76. |
| SUN Luyao, CHEN Laijun, XIONG Yufeng, et al. Capacity optimization configuration of hydrogen energy storage cogeneration integrated energy system considering photothermal collector module[J]. Electric Power Automation Equipment, 2023, 43 (12): 70- 76. | |
| 9 | 陈燚, 何山, 谢少华, 等. 基于合作博弈的风-光-电氢微网容量配置[J]. 太阳能学报, 2024, 45 (2): 395- 405. |
| CHEN Yi, HE Shan, XIE Shaohua, et al. Capacity configuration of wind-photovoltaic-electric hydrogen microgrid based on cooperative game[J]. Acta Energiae Solaris Sinica, 2024, 45 (2): 395- 405. | |
| 10 | 陈铭宏天, 耿江海, 赵雨泽, 等. 基于两阶段随机优化的电氢耦合微电网周运行策略[J]. 中国电力, 2025, 58 (5): 82- 90. |
| CHEN Minghongtian, GENG Jianghai, ZHAO Yuze, et al. Two-stage stochastic optimization based weekly operation strategy for electric-hydrogen coupled microgrid[J]. Electric Power, 2025, 58 (5): 82- 90. | |
| 11 | 刘铠诚, 王松岑, 何桂雄, 等. 家庭用户燃料电池热电联供系统能量管理策略及配置优化[J]. 综合智慧能源, 2025, 47 (10): 77- 87. |
| LIU Kaicheng, WANG Songcen, HE Guixiong, et al. Energy management strategy and configuration optimization of fuel cell combined heat and power system for household consumers[J]. Integrated Intelligent Energy, 2025, 47 (10): 77- 87. | |
| 12 | 滕云, 孙鹏, 罗桓桓, 等. 计及电热混合储能的多源微网自治优化运行模型[J]. 中国电机工程学报, 2019, 39 (18): 5316- 5324, 5578. |
| TENG Yun, SUN Peng, LUO Huanhuan, et al. Autonomous optimization operation model for multi-source microgrid considering electrothermal hybrid energy storage[J]. Proceedings of the CSEE, 2019, 39 (18): 5316- 5324, 5578. | |
| 13 | 吕振宇, 丁磊, 吴在军, 等. 考虑电-氢-热多能互补的微网多目标优化配置[J]. 电力工程技术, 2024, 43 (2): 11- 20. |
| LYU Zhenyu, DING Lei, WU Zaijun, et al. Multi-objective optimization configuration of microgrid considering electricity-hydrogen-heat multi-energy complementation[J]. Electric Power Engineering Technology, 2024, 43 (2): 11- 20. | |
| 14 | 房超运, 杨昆, 柴瑞环. 分时电价下含电动汽车的微电网群双层多目标优化调度[J]. 电力科学与技术学报, 2024, 39 (1): 124- 133. |
| FANG Chaoyun, YANG Kun, CHAI Ruihuan. Two-layer multi-objective optimal dispatching of microgrid group with electricvehicles under time-of-use electricity prices[J]. Journal of Electric Power Science and Technology, 2024, 39 (1): 124- 133. | |
| 15 | 田海东, 何山, 艾纯玉, 等. 计及能源交易下基于纳什议价模型的多微网合作博弈运行优化策略[J]. 电力系统保护与控制, 2024, 52 (6): 29- 41. |
| TIAN Haidong, HE Shan, AI Chunyu, et al. Optimization strategy for cooperative game operation of multi-microgrids based on the Nashbargaining model considering energy trading[J]. Power System Protection and Control, 2024, 52 (6): 29- 41. | |
| 16 | 荆江平, 李晨, 孙勇, 等. 基于点对点交易与储能循环寿命约束的多微网综合能源系统能量共享优化[J]. 电力信息与通信技术, 2024, 22 (9): 8- 17. |
| JING Jiangping, LI Chen, SUN Yong, et al. Optimization of energy sharing in multi-microgrid integrated energy systems based on peer-to-peer trading and energy storage cycle life constraints[J]. Electric Power Information and Communication Technology, 2024, 22 (9): 8- 17. | |
| 17 | 康田园, 刘科研, 贾东梨, 等. 计及分布式电源出力不确定性的虚拟电厂鲁棒优化调度[J]. 电力信息与通信技术, 2024, 22 (2): 16- 24. |
| KANG Tianyuan, LIU Keyan, JIA Dongli, et al. Robust optimal scheduling of virtual power plant considering output uncertainty of distributed generation[J]. Electric Power Information and Communication Technology, 2024, 22 (2): 16- 24. | |
| 18 | 段麟奇, 贾燕冰, 黄亮, 等. 含多类型电解槽模块的电-氢-热综合能源系统优化策略[J/OL]. 上海交通大学学报, 2025: 1–17. (2025-05-29). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2025.050. |
| DUAN Linqi, JIA Yanbing, HUANG Liang, et al. Optimisation strategy for an integrated electric-hydrogen-thermal energy system with multiple types of electrolyser modules[J/OL]. Journal of Shanghai Jiaotong University, 2025: 1–17. (2025-05-29). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2025.050. | |
| 19 |
HAN P F, XU X Y, YAN Z, et al. Dual-layer model predictive control-based scheduling of integrated electricity-hydrogen-heat microgrid[J]. IET Renewable Power Generation, 2024, 18 (S1): 4638- 4649.
DOI |
| 20 | 邢家维, 程艳, 孙树敏, 等. 计及负荷运行风险的电氢热耦合微电网区域零碳优化调度技术[J]. 山东电力技术, 2025, 52 (1): 38- 45. |
| XING Jiawei, CHENG Yan, SUN Shumin, et al. Zero carbon optimization scheduling technology for electric hydrogen thermal coupling microgrid regions considering load operation risks[J]. Shandong Electric Power, 2025, 52 (1): 38- 45. | |
| 21 | 郭佳, 潘磊, 苏莽, 等. 基于改进RWCE算法的海岛微电网双层优化方法[J]. 能源研究与信息, 2024, 40 (4): 203- 212. |
| GUO Jia, PAN Lei, SU Mang, et al. Double-layer optimization of island micro-grid based on improved RWCE algorithm[J]. Energy Research and Information, 2024, 40 (4): 203- 212. | |
| 22 | 刘权, 钟剑, 陈晨, 等. 基于压缩空气储能的电-热综合能源系统两阶段弹性提升策略[J/OL]. 电网技术, 2025: 1–18. (2025-05-09). https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2025.0010. |
| LIU Quan, ZHONG Jian, CHEN Chen, et al. Two-stage resilience enhancement strategy for integrated electricity-heat energy system based on compressed air energy storage[J/OL]. Power System Technology, 2025: 1–18. (2025-05-09). https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2025.0010. | |
| 23 | 王世萱, 朱武. 含冰蓄冷空调的CCHP微电网优化调度[J]. 上海电力大学学报, 2021, 37 (1): 37- 43. |
| WANG Shixuan, ZHU Wu. Optimal scheduling of CCHP micro-grid with ice storage air-conditioning[J]. Journal of Shanghai University of Electric Power, 2021, 37 (1): 37- 43. | |
| 24 | 李佩杰, 陆镛, 白晓清, 等. 基于交替方向乘子法的动态经济调度分散式优化[J]. 中国电机工程学报, 2015, 35 (10): 2428- 2435. |
| LI Peijie, LU Yong, BAI Xiaoqing, et al. Decentralized optimization for dynamic economic dispatch based on alternating direction method of multipliers[J]. Proceedings of the CSEE, 2015, 35 (10): 2428- 2435. | |
| 25 | 严嘉鑫, 范宏, 贾庆山, 等. 计及共享氢储能和虚拟储能的多园区综合能源系统协同规划[J]. 智慧电力, 2025, 53 (6): 10- 18. |
| YAN Jiaxin, FAN Hong, JIA Qingshan, et al. Collaborative planning of multi-park integrated energy systems considering shared hydrogen energy storage and virtual energy storage[J]. Smart Power, 2025, 53 (6): 10- 18. | |
| 26 | 李明, 尹文良, 李勇康, 等. 多源耦合不确定性下含电氢储能的微电网低碳容量优化配置研究[J]. 储能科学与技术, 2025, 14 (5): 1969- 1981. |
| LI Ming, YIN Wenliang, LI Yongkang, et al. Low-carbon capacity optimal configuration of microgrid with hydrogen energy storage under multi-source coupling uncertainties[J]. Energy Storage Science and Technology, 2025, 14 (5): 1969- 1981. | |
| 27 | 高扬, 贺兴, 艾芊. 基于数字孪生驱动的智慧微电网多智能体协调优化控制策略[J]. 电网技术, 2021, 45 (7): 2483- 2491. |
| GAO Yang, HE Xing, AI Qian. Multi agent coordinated optimal control strategy for smart microgrid based on digital twin drive[J]. Power System Technology, 2021, 45 (7): 2483- 2491. | |
| 28 | 曹猛, 解超, 尹纯亚, 等. 计及源荷不确定性的多综合能源微网协同优化运行策略[J]. 电网与清洁能源, 2025, 41 (3): 112- 124. |
| CAO Meng, XIE Chao, YIN Chunya, et al. Co-optimized operation strategy for multiple integrated energy microgrids considering source-load uncertainty[J]. Power System and Clean Energy, 2025, 41 (3): 112- 124. | |
| 29 | 陈乐飞, 朱自伟, 王凯, 等. 基于混合博弈的配电网与多综合能源微网优化运行[J]. 电网技术, 2023, 47 (6): 2229- 2243. |
| CHEN Lefei, ZHU Ziwei, WANG Kai, et al. Optimal operation of distribution networks and multiple integrated energy microgrids based on mixed game theory[J]. Power System Technology, 2023, 47 (6): 2229- 2243. | |
| 30 | 宋晓通, 陈佳琪, 师芊芊. 多主体博弈背景下的综合能源微网优化调度[J]. 高电压技术, 2023, 49 (8): 3163- 3178. |
| SONG Xiaotong, CHEN Jiaqi, SHI Qianqian. Optimal scheduling of integrated energy microgrid under the background of multi-agent game[J]. High Voltage Engineering, 2023, 49 (8): 3163- 3178. | |
| 31 |
TAN Z F, ZHONG H W, WANG J X, et al. Enforcing intra-regional constraints in Tie-line scheduling: a projection-based framework[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 4751- 4761.
DOI |
| 32 | 冯昌森, 李邗邺, 汤飞霞, 等. 考虑配电系统拓扑变化的电压控制深度强化学习方法[J]. 电力自动化设备, 2025, 45 (8): 156- 163. |
| FENG Changsen, LI Hanye, TANG Feixia, et al. Deep reinforcement learning method for voltage control consideringtopology change of distribution system[J]. Electric Power Automation Equipment, 2025, 45 (8): 156- 163. | |
| 33 | 沈赋, 张宇涛, 王健, 等. 基于改进随机响应面法的电-气-热区域综合能源系统概率能量流计算[J]. 电力系统保护与控制, 2025, 53 (5): 69- 81. |
| SHEN Fu, ZHANG Yutao, WANG Jian, et al. Probabilistic energy flow calculation for regional integrated electricity-gas-heat energy systems based on an improved stochastic response surface method[J]. Power System Protection and Control, 2025, 53 (5): 69- 81. | |
| 34 |
YAN M Y, GAN W, ZHOU Y, et al. Projection method for blockchain-enabled non-iterative decentralized management in integrated natural gas-electric systems and its application in digital twin modelling[J]. Applied Energy, 2022, 311, 118645.
DOI |
| 35 | 彭弘毅, 晏鸣宇, 周奕佳. 基于降维投影的氢-电综合能源系统最优潮流[J]. 电力系统自动化, 2025, 49 (7): 169- 178. |
| PENG Hongyi, YAN Mingyu, ZHOU Yijia. Optimal power flow of integrated hydrogen-electricity energy system based on reduced-dimension projection[J]. Automation of Electric Power Systems, 2025, 49 (7): 169- 178. |
| [1] | 张宸宇, 喻建瑜, 史明明, 刘瑞煌. 基于构网型储能的新能源微电网电压动态控制性能分析与优化[J]. 中国电力, 2025, 58(9): 115-123. |
| [2] | 皇甫霄文, 李科, 许长清, 蒋小亮, 于昊正, 王汝靖. 计及多微网灵活性的端对端分散式交易策略[J]. 中国电力, 2025, 58(9): 194-204, 218. |
| [3] | 樊会丛, 段志国, 陈志永, 朱士加, 刘航, 李文霄, 杨阳. 基于多智能体深度策略梯度的离网型微电网双层优化调度[J]. 中国电力, 2025, 58(5): 11-20, 32. |
| [4] | 陈炯, 吴文清, 李豪, 秦子翌, 陈翔, 陈宣元. 独立光储微电网控制策略研究[J]. 中国电力, 2025, 58(5): 74-81, 198. |
| [5] | 王力, 蒋宇翔, 曾祥君, 赵斌, 李均昊. 基于深度强化学习的孤岛微电网二次频率控制[J]. 中国电力, 2025, 58(5): 176-188. |
| [6] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
| [7] | 何锦涛, 王灿, 王明超, 程本涛, 刘于正, 常文涵, 王锐, 余涵. 基于改进双深度Q网络的微电网群能量管理策略[J]. 中国电力, 2025, 58(10): 14-26. |
| [8] | 柳华, 熊再豹, 蒋陶宁, 高宇, 金雨含, 葛磊蛟. 分布式强化学习驱动的微电网群动态能量优化管理策略[J]. 中国电力, 2025, 58(10): 50-62. |
| [9] | 陶磊, 罗萍萍, 林济铿. 基于深度学习的直流微电网虚假数据注入攻击二阶段检测方法[J]. 中国电力, 2024, 57(9): 11-19. |
| [10] | 祝士焱, 许寅, 和敬涵, 王颖. 基于多微电网投影的配电系统协调恢复方法[J]. 中国电力, 2024, 57(9): 224-230. |
| [11] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
| [12] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
| [13] | 谭虎, 王小亮, 徐亭亭, 赵珂, 宿连超, 张文玉, 辛征. 风光沼储交直流混合农村微电网经济技术优化[J]. 中国电力, 2024, 57(3): 27-33. |
| [14] | 李一鸣, 何奇, 王海亮, 钟浩, 马辉, 黄悦华. 基于分层事件触发的混合微电网集中控制策略[J]. 中国电力, 2024, 57(3): 73-82. |
| [15] | 张冲标, 钱辰雯, 俞红燕, 彭燕玲, 陈金威. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编