中国电力 ›› 2025, Vol. 58 ›› Issue (12): 14-26.DOI: 10.11930/j.issn.1004-9649.202504010
• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇
收稿日期:2025-04-07
修回日期:2025-11-11
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
YU Junyi1(
), LIAO Siyang1(
), KE Deping1, ZHANG Jie2
Received:2025-04-07
Revised:2025-11-11
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
针对电网需求响应中大规模异构空调负荷精细化调控的需求,首先,利用二阶等效热参数模型推导空调稳态运行功率,结合高斯混合模型刻画空调参数异质性,准确计算调节容量。然后,提出“中央引导+本地自治”的低维广播信号控制策略,利用马尔可夫链模型结合增广拉格朗日函数寻找不同温度区间最优升温概率,平衡电网需求与经济成本约束。最后,通过仿真分析验证所提方法,结果表明:
余君一, 廖思阳, 柯德平, 张杰. 面向电网需求响应的空调负荷异质性建模与低维广播协同调控方法[J]. 中国电力, 2025, 58(12): 14-26.
YU Junyi, LIAO Siyang, KE Deping, ZHANG Jie. Heterogeneity Modeling and Low-Dimensional Broadcast Cooperative Control of Air Conditioning Load for Power Grid Demand Response[J]. Electric Power, 2025, 58(12): 14-26.
| 参数 | 取值 | |
| 空气等效热阻 | ||
| 材料等效热阻 | ||
| 空气等效热容 | ||
| 材料等效热容 | ||
| 制冷电功率 | ||
| 能效比 | ||
| 温度设定值 | ||
| 允许温度偏差 | ||
| 环境温度 |
表 1 模型参数设置
Table 1 Model parameter settings
| 参数 | 取值 | |
| 空气等效热阻 | ||
| 材料等效热阻 | ||
| 空气等效热容 | ||
| 材料等效热容 | ||
| 制冷电功率 | ||
| 能效比 | ||
| 温度设定值 | ||
| 允许温度偏差 | ||
| 环境温度 |
| 温度区间/℃ | 1 | 2 | 3 | 4 | 5 | |||||
| 18~19 | 0.96 | 0.95 | 0.88 | 0.86 | 0.85 | |||||
| 19~20 | 0.92 | 0.87 | 0.79 | 0.75 | 0.72 | |||||
| 20~21 | 0.85 | 0.74 | 0.68 | 0.62 | 0.6 | |||||
| 21~22 | 0.76 | 0.63 | 0.56 | 0.58 | 0.48 | |||||
| 22~23 | 0.72 | 0.65 | 0.62 | 0.63 | 0.68 | |||||
| 23~24 | 0.63 | 0.72 | 0.65 | 0.62 | 0.52 | |||||
| 24~25 | 0.56 | 0.45 | 0.42 | 0.39 | 0.32 | |||||
| 25~26 | 0.32 | 0.28 | 0.25 | 0.21 | 0.16 | |||||
| 26~27 | 0.18 | 0.09 | 0.09 | 0.07 | 0.04 | |||||
| 27~28 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 |
表 2 5个周期内的广播参数
Table 2 Broadcast parameters within 5 cycles
| 温度区间/℃ | 1 | 2 | 3 | 4 | 5 | |||||
| 18~19 | 0.96 | 0.95 | 0.88 | 0.86 | 0.85 | |||||
| 19~20 | 0.92 | 0.87 | 0.79 | 0.75 | 0.72 | |||||
| 20~21 | 0.85 | 0.74 | 0.68 | 0.62 | 0.6 | |||||
| 21~22 | 0.76 | 0.63 | 0.56 | 0.58 | 0.48 | |||||
| 22~23 | 0.72 | 0.65 | 0.62 | 0.63 | 0.68 | |||||
| 23~24 | 0.63 | 0.72 | 0.65 | 0.62 | 0.52 | |||||
| 24~25 | 0.56 | 0.45 | 0.42 | 0.39 | 0.32 | |||||
| 25~26 | 0.32 | 0.28 | 0.25 | 0.21 | 0.16 | |||||
| 26~27 | 0.18 | 0.09 | 0.09 | 0.07 | 0.04 | |||||
| 27~28 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 |
| 策略 | 平均负荷差率/% | 平均温度偏差/℃ | ||
| 本文方法 | 1.87 | 0.52 | ||
| 固定概率 | 4.12 | 0.83 | ||
| 无异质性建模 | 5.45 | 0.76 |
表 3 不同策略下关键性能指标对比
Table 3 Comparison of key performance indicators under different strategies
| 策略 | 平均负荷差率/% | 平均温度偏差/℃ | ||
| 本文方法 | 1.87 | 0.52 | ||
| 固定概率 | 4.12 | 0.83 | ||
| 无异质性建模 | 5.45 | 0.76 |
| 1 |
左强, 李波, 杨世海. 大规模空调负荷参与新能源电力系统调频的无模型自适应控制方法[J]. 电力科学与技术学报, 2023, 38 (2): 224- 231.
DOI |
|
ZUO Qiang, LI Bo, YANG Shihai. Model-free adaptive frequency control of renewable energy power systems withparticipation of large-scale air conditioner loads[J]. Journal of Electric Power Science and Technology, 2023, 38 (2): 224- 231.
DOI |
|
| 2 |
徐玉婷, 田世明, 陈宋宋, 等. 基于LSTM的居民负荷预测及其可调节潜力分析[J]. 电力信息与通信技术, 2023, 21 (5): 1- 8.
DOI |
|
XU Yuting, TIAN Shiming, CHEN Songsong, et al. Resident load forecasting based on LSTM and its adjustable potential analysis[J]. Electric Power Information and Communication Technology, 2023, 21 (5): 1- 8.
DOI |
|
| 3 | 史媛, 周浩, 张俊娜, 等. 双碳背景下的用户负荷主动优化方法研究[J]. 电力信息与通信技术, 2023, 21 (5): 25- 32. |
| SHI Yuan, ZHOU Hao, ZHANG Junnan, et al. Research on user load active optimization method under dual carbon background[J]. Electric Power Information and Communication Technology, 2023, 21 (5): 25- 32. | |
| 4 |
刘广生, 李成鑫, 侯治吉, 等. 计及用户舒适度的空调负荷可调节能力评估及响应策略[J]. 电力系统自动化, 2023, 47 (21): 58- 66.
DOI |
|
LIU Guangsheng, LI Chengxin, HOU Zhiji, et al. Evaluation of adjustable capacity and response strategy for air conditioning load considering comfort of customers[J]. Automation of Electric Power Systems, 2023, 47 (21): 58- 66.
DOI |
|
| 5 |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819.
DOI |
|
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819.
DOI |
|
| 6 |
王朋, 张迪, 张勇军, 等. 新型电力系统数智化关键技术应用研究与展望[J]. 电力系统保护与控制, 2025, 53 (6): 175- 187.
DOI |
|
WANG Peng, ZHANG Di, ZHANG Yongjun, et al. Research and prospects for key digital-intelligent technology applications in new power systems[J]. Power System Protection and Control, 2025, 53 (6): 175- 187.
DOI |
|
| 7 |
唐志辉, 张欣, 宁艺飞, 等. 基于联盟链技术的商业建筑转供电主体需求响应策略[J]. 中国电力, 2024, 57 (12): 109- 119.
DOI |
|
TANG Zhihui, ZHANG Xin, NING Yifei, et al. Demand response strategy for commercial building power supply conversion entities based on alliance chain technology[J]. Electric Power, 2024, 57 (12): 109- 119.
DOI |
|
| 8 | 任帅, 肖楚鹏, 梁新龙, 等. 计及虚拟电厂内需求侧灵活性资源的实时电价和V2G协调优化调度策略[J]. 电力信息与通信技术, 2024, 22 (8): 27- 36. |
| REN Shuai, XIAO Chupeng, LIANG Xinlong, et al. The real-time electricity price and V2G coordinated optimal scheduling strategy considering demand-side flexibility resources in VPP[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 27- 36. | |
| 9 | 李思维, 许中平, 于龙, 等. 计及电动汽车和温控负荷集群的负荷控制用户组合优化方法[J]. 中国电力, 2025, 58 (3): 86- 97. |
| LI Siwei, XU Zhongping, YU Long, et al. A load control user combinatorial optimization method considering electric vehicle and temperature-controlled load clusters[J]. Electric Power, 2025, 58 (3): 86- 97. | |
| 10 |
张冲标, 高博, 漆淘懿, 等. 基于变频空调的虚拟储能建模与控制[J]. 电力科学与技术学报, 2023, 38 (4): 240- 249.
DOI |
|
ZHANG Chongbiao, GAO Bo, QI Taoyi, et al. Modelling and control of virtual energy storage based on the inverter air conditioner[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 240- 249.
DOI |
|
| 11 |
张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32 (3): 97- 106.
DOI |
|
ZHANG Qin, WANG Xifan, WANG Jianxue, et al. Survey of demand response research in deregulated electricity markets[J]. Automation of Electric Power Systems, 2008, 32 (3): 97- 106.
DOI |
|
| 12 | 吴桐, 惠红勋, 张洪财. 商业建筑空调系统参与城市电网负荷调控综述[J]. 中国电力, 2023, 56 (7): 1- 11. |
| WU Tong, HUI Hongxun, ZHANG Hongcai. Review of commercial air conditioners for participating in urban grid regulation[J]. Electric Power, 2023, 56 (7): 1- 11. | |
| 13 |
周颖, 龚桃荣, 陈宋宋, 等. 面向新型电力负荷管理的分层分区动态调控架构展望[J]. 电力信息与通信技术, 2023, 21 (4): 51- 58.
DOI |
|
ZHOU Ying, YAO Taorong, CHEN Songsong, et al. Prospect of hierarchical and partitioned dynamic regulation architecture for new power load management[J]. Electric Power Information and Communication Technology, 2023, 21 (4): 51- 58.
DOI |
|
| 14 |
张梦悦, 余涛, 潘振宁, 等. 基于数据驱动知识显式嵌入的配电网最优需求响应策略[J]. 电力信息与通信技术, 2024, 22 (1): 14- 21.
DOI |
|
ZHANG Mengyue, YU Tao, PAN Zhenning, et al. Optimal demand response strategy for distribution network based on data-driven knowledge explicit embedding[J]. Electric Power Information and Communication Technology, 2024, 22 (1): 14- 21.
DOI |
|
| 15 |
张俊成, 黎敏, 刘志文, 等. 配电网用户侧多类型柔性资源调节能力评估方法[J]. 中国电力, 2023, 56 (9): 96- 103, 119.
DOI |
|
ZHANG Juncheng, LI Min, LIU Zhiwen, et al. An evaluation method for multi-type flexible resource regulation capability on the user side of distribution networks[J]. Electric Power, 2023, 56 (9): 96- 103, 119.
DOI |
|
| 16 |
仪忠凯, 侯朗博, 徐英, 等. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57 (12): 82- 96.
DOI |
|
YI Zhongkai, HOU Langbo, XU Ying, et al. Aggregation and operation key technology of virtual power plant with flexible resources in electricity market environment: review[J]. Electric Power, 2024, 57 (12): 82- 96.
DOI |
|
| 17 |
程林, 万宇翔, 张放, 等. 基于负荷聚合商业务的空调服务运作模式及控制策略[J]. 电力系统自动化, 2018, 42 (18): 8- 16.
DOI |
|
CHENG Lin, WAN Yuxiang, ZHANG Fang, et al. Operation mode and control strategy for air-conditioning service based on business of load aggregator[J]. Automation of Electric Power Systems, 2018, 42 (18): 8- 16.
DOI |
|
| 18 |
HUI H X, DING Y, SONG Y H, et al. Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error[J]. Applied Energy, 2019, 250, 161- 174.
DOI |
| 19 |
许竞, 赵铁军, 高小刚, 等. 高比例新能源电力系统调节资源灵活性不足风险分析[J]. 中国电力, 2024, 57 (11): 129- 138.
DOI |
|
XU Jing, ZHAO Tiejun, GAO Xiaogang, et al. Risk analysis of insufficient flexibility from regulation resources in high proportion renewable energy power systems[J]. Electric Power, 2024, 57 (11): 129- 138.
DOI |
|
| 20 |
党东升, 韩松, 周珏, 等. 需求响应参与系统调峰研究综述[J]. 电力需求侧管理, 2017, 19 (5): 13- 17.
DOI |
|
DANG Dongsheng, HAN Song, ZHOU Jue, et al. Review of demand response participating in power system peak shifting[J]. Power Demand Side Management, 2017, 19 (5): 13- 17.
DOI |
|
| 21 |
YU P P, ZHANG H C, SONG Y H, et al. District cooling system control for providing operating reserve based on safe deep reinforcement learning[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 40- 52.
DOI |
| 22 | HUI H X, YU P P, ZHANG H C, et al. Regulation capacity evaluation of large-scale residential air conditioners for improving flexibility of urban power systems[J]. International Journal of Electrical Power & Energy Systems, 2022, 142, 108269. |
| 23 |
WANG Z Y, YU P P, ZHANG H C. Privacy-preserving regulation capacity evaluation for HVAC systems in heterogeneous buildings based on federated learning and transfer learning[J]. IEEE Transactions on Smart Grid, 2023, 14 (5): 3535- 3549.
DOI |
| 24 |
王蓓蓓, 胡晓青, 顾伟扬, 等. 分层控制架构下大规模空调负荷参与调峰的分散式协同控制策略[J]. 中国电机工程学报, 2019, 39 (12): 3514- 3528.
DOI |
|
WANG Beibei, HU Xiaoqing, GU Weiyang, et al. Hierarchical control architecture and decentralized cooperative control strategy for large scale air conditioning load participating in peak load regulation[J]. Proceedings of the CSEE, 2019, 39 (12): 3514- 3528.
DOI |
|
| 25 |
王成山, 刘梦璇, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32 (25): 36- 43, 8.
DOI |
|
WANG Chengshan, LIU Mengxuan, LU Ning. A Tie-line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Proceedings of the CSEE, 2012, 32 (25): 36- 43, 8.
DOI |
|
| 26 |
姚垚, 张沛超. 基于市场控制的空调负荷参与平抑微网联络线功率波动的方法[J]. 中国电机工程学报, 2018, 38 (3): 782- 791.
DOI |
|
YAO Yao, ZHANG Peichao. A market-based control method for air conditioner loads to smooth microgrid Tie-line power fluctuation[J]. Proceedings of the CSEE, 2018, 38 (3): 782- 791.
DOI |
|
| 27 |
CHENG L M, BAO Y Q. A day-ahead scheduling of large-scale thermostatically controlled loads model considering second-order equivalent thermal parameters model[J]. IEEE Access, 2020, 8, 102321- 102334.
DOI |
| 28 |
王婷, 刘潇, 武媚, 等. 大规模空调负荷聚合建模及跟踪控制方案研究[J]. 电力需求侧管理, 2020, 22 (6): 51- 56.
DOI |
|
WANG Ting, LIU Xiao, WU Mei, et al. Research on load aggregation modeling and tracking control scheme for large scale air conditioning[J]. Power Demand Side Management, 2020, 22 (6): 51- 56.
DOI |
|
| 29 | BAO Y Q, YAO Z L, WU X H. Thermal parameters estimation of air conditioners based on reduced order equivalent thermal parameters model[J]. International Journal of Electrical Power & Energy Systems, 2023, 151, 109149. |
| 30 | HUI H X, YU P P, ZHANG H C, et al. Regulation capacity evaluation of large-scale heterogeneous residential air conditioning loads[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Nanjing, China. IEEE, 2022: 2505–2510. |
| 31 |
SAMMAKNEJAD N, ZHAO Y J, HUANG B. A review of the Expectation Maximization algorithm in data-driven process identification[J]. Journal of Process Control, 2019, 73, 123- 136.
DOI |
| 32 | IEŠMANTAS T, ALZBUTAS R. Bayesian assessment of electrical power transmission grid outage risk[J]. International Journal of Electrical Power & Energy Systems, 2014, 58, 85- 90. |
| 33 | CHEN Y F, TAN P G, LI M, et al. K-means clustering method based on nearest-neighbor density matrix for customer electricity behavior analysis[J]. International Journal of Electrical Power & Energy Systems, 2024, 161, 110165. |
| [1] | 刘航, 申皓, 杨勇, 纪陵, 余洋. 基于高阶马尔可夫链的纯电重卡集群负荷预测[J]. 中国电力, 2024, 57(5): 61-69. |
| [2] | 李丹, 梁云嫣, 缪书唯, 方泽仁, 胡越, 贺帅. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57(12): 17-29. |
| [3] | 高文浩, 赵海兵, 殷爽睿, 崔德民, 田怀源, 葛杨, 李晓博, 孙海涛. 考虑负荷虚拟储能特性的商业区储能优化配置[J]. 中国电力, 2020, 53(4): 96-104. |
| [4] | 郑雅楠, 单葆国, 顾宇桂, 刘伟, 李庚银. 改进的电量灰色预测方法实证对比研究[J]. 中国电力, 2013, 46(6): 108-112. |
| [5] | 章伟, 邓院昌. 基于灰色-马尔可夫链的短期风速及风电功率预测[J]. 中国电力, 2013, 46(2): 98-102. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编