中国电力 ›› 2025, Vol. 58 ›› Issue (12): 14-26.DOI: 10.11930/j.issn.1004-9649.202504010

• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇    

面向电网需求响应的空调负荷异质性建模与低维广播协同调控方法

余君一1(), 廖思阳1(), 柯德平1, 张杰2   

  1. 1. 武汉大学 电气与自动化学院,湖北 武汉 430072
    2. 云南电网有限公司文山供电局,云南 文山 663000
  • 收稿日期:2025-04-07 修回日期:2025-11-11 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    余君一(2002),男,从事虚拟电厂需求响应技术研究,E-mail:yujunyi@whu.edu.cn
    廖思阳(1989),男,通信作者,博士,副教授,博士生导师,从事负荷控制需求侧响应技术研究,E-mail:liaosiyang@whu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2023YFB2407300);中国南方电网责任有限公司科技项目(YNKJXM20222103)。

Heterogeneity Modeling and Low-Dimensional Broadcast Cooperative Control of Air Conditioning Load for Power Grid Demand Response

YU Junyi1(), LIAO Siyang1(), KE Deping1, ZHANG Jie2   

  1. 1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
    2. Yunnan Electric Power Company Wenshan Power Supply Bureau, Wenshan 663000, China
  • Received:2025-04-07 Revised:2025-11-11 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by the National Key Research and Development Program of China (No.2023YFB2407300) and the Science and Technology Project of China Southern Power Grid Co., Ltd. (No.YNKJXM20222103).

摘要:

针对电网需求响应中大规模异构空调负荷精细化调控的需求,首先,利用二阶等效热参数模型推导空调稳态运行功率,结合高斯混合模型刻画空调参数异质性,准确计算调节容量。然后,提出“中央引导+本地自治”的低维广播信号控制策略,利用马尔可夫链模型结合增广拉格朗日函数寻找不同温度区间最优升温概率,平衡电网需求与经济成本约束。最后,通过仿真分析验证所提方法,结果表明:50000台空调异构样本集中调节容量计算准确率达97.5%,可稳定提供最大11188.12 kW的负荷削减,且广播策略能动态跟踪电网需求功率,有效缓解夏季电网高峰压力,所提方法为大规模温控负荷参与需求响应提供了理论支撑与实用化解决方案。

关键词: 空调负荷, 调节容量评估, 高斯混合模型, 马尔可夫链, 拉格朗日函数

Abstract:

To address the demand for refined regulation of large-scale heterogeneous air-conditioning loads in power grid demand response, a second-order equivalent thermal parameter model is firstly used to derive the steady-state operating power of air conditioners, and the heterogeneity of air-conditioning parameters is characterized by a Gaussian mixture model to accurately calculate the regulation capacity. Then, an innovative low-dimensional broadcast signal control strategy of "central guidance + local autonomy" is designed. A Markov chain model combined with an augmented Lagrangian function is used to find the optimal temperature rise probability in different temperature intervals, balancing the power grid demand and economic cost constraints. Finally, the proposed method is verified through simulation analysis. The results show that the calculation accuracy of regulation capacity reaches 97.5% in a heterogeneous sample set of 50000 air conditioners, which can stably provide a maximum load reduction of 11188.12 kW. Moreover, the broadcast strategy can dynamically track the grid demand power and effectively alleviate the summer grid peak pressure. The proposed method provides theoretical support and a practical solution for large-scale thermostatically controlled loads to participate in demand response.

Key words: conditioning load, regulation capacity assessment, Gaussian mixture model, Markov chain, Lagrangian function


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?