中国电力 ›› 2024, Vol. 57 ›› Issue (11): 62-69.DOI: 10.11930/j.issn.1004-9649.202307020

• 电网 • 上一篇    下一篇

含LCC/MMC交直流混联系统的状态估计及不良数据检测

赵化时1(), 黄耀辉2, 宋智强2, 许建中2(), 郑可欣2, 梁康康2   

  1. 1. 中国南方电网电力调度控制中心,广东 广州 510670
    2. 新能源电力系统国家重点实验室(华北电力大学),北京 102206
  • 收稿日期:2023-07-06 接受日期:2024-04-24 出版日期:2024-11-28 发布日期:2024-11-27
  • 作者简介:赵化时(1985—),男,高级工程师,从事电力系统自动化、电力系统高性能计算分析研究,E-mail:zhaohs@csg.cn
    许建中(1987—),男,通信作者,博士,教授,从事高压直流输电、FACTS研究,E-mail:xujianzhong@ncepu.edu.cn
  • 基金资助:
    中国南方电网有限责任公司科技项目(ZDKJXM20200052)。

State Estimation and Bad Data Detection in Hybrid AC/DC Systems with LCC/MMC

Huashi ZHAO1(), Yaohui HUANG2, Zhiqiang SONG2, Jianzhong XU2(), Kexin ZHENG2, Kangkang LIANG2   

  1. 1. Power Dispatching Control Center of CSG, Guangzhou 510670, China
    2. State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources (North China Electric Power University), Beijing 102206, China
  • Received:2023-07-06 Accepted:2024-04-24 Online:2024-11-28 Published:2024-11-27
  • Supported by:
    This work is supported by the Science and Technology Project of CSG (No.ZDKJXM20200052).

摘要:

基于调度系统导出的通用信息模型(common information model,CIM)中的XML和E文档,从数据生成的角度出发,首先将导出文档转化为状态估计原始输入数据,考虑交流系统与电网换相换流器(line commutated converter,LCC)、模块化多电平换流器(modular multilevel converter,MMC)以及LCC与MMC间的相互影响,采用统一迭代法对500 kV子网络进行交直流状态估计建模;其次,在原始量测数据的基础上施加高斯噪声,借助最大化残差检验方法以进行不良数据的检测与辨识;最后,通过仿真数据验证了交直流状态估计模型及不良数据检测与辨识的有效性。

关键词: CIM/XML, 交直流状态估计, LCC, MMC, 不良数据的检测与辨识, 最大化残差检验

Abstract:

Based on the CIM/XML and CIM/E documents exported from the regional dispatching system, this paper focuses on data generation and starts by converting the exported documents into raw input data for state estimation. Considering the interactions between the AC system and LCC, MMC, and between LCC and MMC, the unified iterative method is used to model the AC/DC state estimation of the 500kV subnetwork. Subsequently, the Gaussian noise is added to the original measurement data, and the maximum residual test method is employed for detecting and identifying bad data. Finally, the effectiveness of the proposed models for AC/DC state estimation and the detection and identification of bad data are validated through simulation data.

Key words: CIM/XML, AC/DC state estimation, LCC, MMC, detection and identification of bad data, maximum likelihood residual test