[1] 孙冰, 包丹, 张磊. 考虑惯性与阻尼特性的MMC-HVDC附加功率控制策略[J]. 电力系统保护与控制, 2020, 48(17): 108-114 SUN Bing, BAO Dan, ZHANG Lei. Supplementary power control scheme for an MMC-HVDC station considering inertia and damping[J]. Power System Protection and Control, 2020, 48(17): 108-114 [2] 陈宁, 齐磊, 包萌, 等. 模块化多电平换流器的桥臂平均值模型[J]. 中国电力, 2019, 52(8): 8-15 CHEN Ning, QI Lei, BAO Meng, et al. Bridge average value model of modular multilevel converter[J]. Electric Power, 2019, 52(8): 8-15 [3] 张开宇, 冯煜尧, 崔勇, 等. MMC-HVDC系统的低频模型预测控制方法[J]. 中国电力, 2018, 51(12): 42-47, 131 ZHANG Kaiyu, FENG Yuyao, CUI Yong, et al. Research on model predictive control for MMC-HVDC with low switching frequency[J]. Electric Power, 2018, 51(12): 42-47, 131 [4] 荣飞, 王亚洲, 饶宏, 等. 柔性直流输电系统换流器损耗与电压等级的关系研究[J]. 中国电力, 2018, 51(12): 48-55 RONG Fei, WANG Yazhou, RAO Hong, et al. Relationship between the power loss of modular multilevel converter and transmission voltage level[J]. Electric Power, 2018, 51(12): 48-55 [5] 罗映红, 许义佳, 史彤彤, 等. 具有直流故障阻断能力的混合型模块化多电平换流器[J]. 中国电力, 2018, 51(5): 1-9 LUO Yinghong, XU Yijia, SHI Tongtong, et al. Hybrid topology of modular multilevel converter with DC fault blocking capability[J]. Electric Power, 2018, 51(5): 1-9 [6] 吴亚楠, 吕天光, 汤广福, 等. 模块化多电平VSC-HVDC换流阀的运行试验方法[J]. 中国电机工程学报, 2012, 32(30): 8-15 WU Yanan, LÜ Tianguang, TANG Guangfu, et al. An operational test method for VSC-HVDC valves based on modular multi-level converters[J]. Proceedings of the CSEE, 2012, 32(30): 8-15 [7] 罗湘, 汤广福, 查鲲鹏, 等. 电压源换流器高压直流输电换流阀的试验方法[J]. 电网技术, 2010, 34(5): 25-29 LUO Xiang, TANG Guangfu, ZHA Kunpeng, et al. Test methods of converter valves in VSC-HVDC power transmission[J]. Power System Technology, 2010, 34(5): 25-29 [8] 张志刚, 胡四全, 任静, 等. 高电压大容量IGBT换流阀设计与试验[J]. 电力电子技术, 2020, 54(4): 11-13 ZHANG Zhigang, HU Siquan, REN Jing, et al. Design and test of high voltage and large capacity IGBT converter valve[J]. Power Electronics, 2020, 54(4): 11-13 [9] 李亚男, 蒋维勇, 余世峰, 等. 舟山多端柔性直流输电工程系统设计[J]. 高电压技术, 2014, 40(8): 2490-2496 LI Yanan, JIANG Weiyong, YU Shifeng, et al. System design of Zhoushan multi-terminal VSC-HVDC transmission project[J]. High Voltage Engineering, 2014, 40(8): 2490-2496 [10] 贺之渊, 赵岩, 汤广福. ±320 kV/1 000 MW柔性直流输电核心技术研发及应用[J]. 智能电网, 2016, 4(2): 124-132 HE Zhiyuan, ZHAO Yan, TANG Guangfu. Key technology research and application of the ±320 kV/1 000 MW VSC-HVDC[J]. Smart Grid, 2016, 4(2): 124-132 [11] 周剑, 黄磊, 刘春晓, 等. 基于鲁西背靠背柔性直流系统的南方电网黑启动方案[J]. 南方电网技术, 2017, 11(6): 8-14 ZHOU Jian, HUANG Lei, LIU Chunxiao, et al. Black-start scheme of China southern power grid based on Luxi back-to-back VSC-HVDC system[J]. Southern Power System Technology, 2017, 11(6): 8-14 [12] 汤广福, 王高勇, 贺之渊, 等. 张北500 kV直流电网关键技术与设备研究[J]. 高电压技术, 2018, 44(7): 2097-2106 TANG Guangfu, WANG Gaoyong, HE Zhiyuan, et al. Research on key technology and equipment for Zhangbei 500 kV DC grid[J]. High Voltage Engineering, 2018, 44(7): 2097-2106 [13] ZHAO B, ZENG R, YU Z Q, et al. A more prospective look at IGCT: uncovering a promising choice for DC grids[J]. IEEE Industrial Electronics Magazine, 2018, 12(3): 6-18. [14] ZENG R, ZHAO B, WEI T, et al. Integrated gate commutated thyristor-based modular multilevel converters: a promising solution for high-voltage DC applications[J]. IEEE Industrial Electronics Magazine, 2019, 13(2): 4-16. [15] 曾嵘, 赵彪, 余占清, 等. IGCT在直流电网中的应用展望[J]. 中国电机工程学报, 2018, 38(15): 4307-4317, 4631 ZENG Rong, ZHAO Biao, YU Zhanqing, et al. Development and prospect of IGCT power device in DC grid[J]. Proceedings of the CSEE, 2018, 38(15): 4307-4317, 4631 [16] 赵彪, 魏天予, 许超群, 等. 基于IGCT的高压大容量模块化多电平变换器[J]. 中国电机工程学报, 2019, 39(2): 562-570, 653 ZHAO Biao, WEI Tianyu, XU Chaoqun, et al. High-voltage and high-power modular multilevel converter based on integrated gate commutated thyristor[J]. Proceedings of the CSEE, 2019, 39(2): 562-570, 653 [17] DAVID W, MICHAIL V, COSMIN B, et al. IGCT based modular multilevel converter for an AC-AC rail power supply[C]//International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2017: 1–8. [18] Thomas Stiasny, Vasileios Kappatos, Thomas Setz, 等. IGCT-更高功率处理能力的正确选择[J]. 大功率变流技术, 2015(6): 1-7, 24 STIASNY T, KAPPATOS V, SETZ T, et al. Where higher power handling capability is required - IGCT is the right choice[J]. High Power Converter Technology, 2015(6): 1-7, 24 [19] LADOUX P, SERBIA N, CARROLL E I. On the potential of IGCTs in HVDC[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(3): 780-793. [20] ZHAO B, ZENG R, LI J G, et al. Practical analytical model and comprehensive comparison of power loss performance for various MMCs based on IGCT in HVDC application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(2): 1071-1083. [21] WEI Tianyu, SONG Qiang, LI Jianguo, et al. Experimental evaluation of IGCT converters with reduced di/dt limiting inductance[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), 2018.
|