[1] GAO Chaochao, GE Haoqing, LU Yingying, et al. Decoupling of provincial energy-related CO2 emissions from economic growth in China and its convergence from 1995 to 2017[J]. Journal of Cleaner Production, 2021, 297: 126627. [2] 杨军, 杨泽, 丛建辉, 等. 责任和收益匹配原则下中国省域碳排放责任共担方案优化[J]. 资源科学, 2022, 44(9): 1745–1758 YANG Jun, YANG Ze, CONG Jianhui, et al. Optimization of China’s provincial carbon emission responsibility sharing scheme based on the principle of responsibility and benefit matching[J]. Resources Science, 2022, 44(9): 1745–1758 [3] 韩亚芬, 孙根年, 李琦. 中国省际SO2排放的环境学习曲线及减排潜力[J]. 环境科学研究, 2008, 21(3): 201–206 HAN Yafen, SUN Gennian, LI Qi. Environment learning curve and emission reducing potential of SO2 emission in China[J]. Research of Environmental Sciences, 2008, 21(3): 201–206 [4] 卢安, 马月华. 基于环境学习曲线的我国纺织服装业减排潜力实证研究[J]. 毛纺科技, 2016, 44(11): 74–77 LU An, MA Yuehua. Empirical research on the potential of emission reduction for China’s textile & apparel industry based on the environmental learning curve[J]. Wool Textile Journal, 2016, 44(11): 74–77 [5] YU Shiwei, AGBEMABIESE L, ZHANG Junjie. Estimating the carbon abatement potential of economic sectors in China[J]. Applied Energy, 2016, 165: 107–118. [6] 饶清华, 邱宇, 许丽忠, 等. 福建省CO2排放及减排潜力分析[J]. 安全与环境工程, 2012, 19(6): 84–87, 92 RAO Qinghua, QIU Yu, XU Lizhong, et al. CO2 emission and its reduction potential in Fujiang Province[J]. Safety and Environmental Engineering, 2012, 19(6): 84–87, 92 [7] 孙根年, 李静, 魏艳旭. 环境学习曲线与我国碳减排目标的地区分解[J]. 环境科学研究, 2011, 24(10): 1194–1202 SUN Gennian, LI Jing, WEI Yanxu. Environmental learning curves and the allocation of carbon mitigation targets among different provinces in China[J]. Research of Environmental Sciences, 2011, 24(10): 1194–1202 [8] TAKAYABU H. CO2 mitigation potentials in manufacturing sectors of 26 countries[J]. Energy Economics, 2020, 86: 104634. [9] HE W J, ZHANG B, DING T. Sources of provincial carbon intensity reduction potential in China: a non-parametric fractional programming approach[J]. Science of the Total Environment, 2020, 730: 139037. [10] WU Feng, HUANG Ningyu, ZHANG Fan, et al. Analysis of the carbon emission reduction potential of China’s key industries under the IPCC 2 ℃ and 1.5 ℃ limits[J]. Technological Forecasting and Social Change, 2020, 159: 120198. [11] XIAO Huijuan, ZHOU Ya, ZHANG Ning, et al. CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement[J]. Resources, Conservation and Recycling, 2021, 174: 105760. [12] BIAN Yiwen, HE Ping, XU Hao. Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach[J]. Energy Policy, 2013, 63: 962–971. [13] SUN J J, DONG F. Decomposition of carbon emission reduction efficiency and potential for clean energy power: evidence from 58 countries[J]. Journal of Cleaner Production, 2022, 363: 132312. [14] TAN Chang, YU Xiang, GUAN Yuru. A technology-driven pathway to net-zero carbon emissions for China’s cement industry[J]. Applied Energy, 2022, 325: 119804. [15] JIANG J J, YE B, ZENG Z Z, et al. Potential and roadmap of CO2 emission reduction in urban buildings: case study of Shenzhen[J]. Advances in Climate Change Research, 2022, 13(4): 587–599. [16] PENG Bingbing, DU Huibin, MA Shoufeng, et al. Urban passenger transport energy saving and emission reduction potential: a case study for Tianjin, China[J]. Energy Conversion and Management, 2015, 102: 4–16. [17] 马丁, 单葆国, 朱发根. 基于CO2排放达峰目标的中长期能源需求展望[J]. 中国电力, 2017, 50(3): 180–185 MA Ding, SHAN Baoguo, ZHU Fagen. A vision of medium-and long-term energy demand based on CO2 emission peak target[J]. Electric Power, 2017, 50(3): 180–185 [18] 郑照宁, 刘德顺. 中国风电投资成本变化预测[J]. 中国电力, 2004, 37(7): 140–150 ZHENG Zhaoning, LIU Deshun. Forecasting the investment cost of wind power in China[J]. Electric Power, 2004, 37(7): 140–150 [19] ARROW K J. The economic implications of learning by doing[M]//Readings in the Theory of Growth. London: Palgrave Macmillan UK, 1971: 131–149. [20] LALL S, TEUBAL M. “Market-stimulating” technology policies in developing countries: a framework with examples from East Asia[J]. World Development, 1998, 26(8): 1369–1385. [21] GILLINGHAM K, NEWELL R G, PIZER W A. Modeling endogenous technological change for climate policy analysis[J]. Energy Economics, 2008, 30(6): 2734–2753. [22] YU C F, VAN SARK W G J H M, ALSEMA E A. Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 324–337. [23] 栾丽娜. 基于学习曲线的我国建筑业技术学习率研究[D]. 青岛: 青岛理工大学, 2020. LUAN Lina. Research on technology learning rate of China’s construction industry based on learning curve[D]. Qingdao: Qingdao University of Technology, 2020. [24] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1–11 ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China’s energy and power system[J]. Electric Power, 2022, 55(5): 1–11 [25] 科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图: 2019[M]. 北京: 科学出版社, 2019. [26] 华强森, 汪小帆, 克林特·伍德, 等. “中国加速迈向碳中和”之七: 碳捕集利用与封存技术(CCUS)[EB/OL](2021-11-12)[2022-09-15].https://www.sohu.com/a/500746322_121207965. [27] 姜春艳. 2000~2013年中国陆地植被吸收二氧化碳量模拟及其时空变化[D]. 哈尔滨: 哈尔滨师范大学, 2015. JIANG Chunyan. Simulation of the amount of vegetation absorbed carbon dioxide and temporal and spatial variation in China from 2000 to 2013[D]. Harbin: Harbin Normal University, 2015.
|