中国电力 ›› 2012, Vol. 45 ›› Issue (4): 87-91.DOI: 10.11930/j.issn.1004-9649.2012.4.87.4

• 新能源 • 上一篇    下一篇

基于CAPSO-RNN的光伏系统短期发电量预测

赵杰, 张艳霞   

  1. 天津大学 智能电网教育部重点实验室,天津 300072
  • 收稿日期:2012-01-05 出版日期:2012-04-18 发布日期:2016-02-29
  • 作者简介:赵杰(1983-),男,河北石家庄人,博士研究生,从事电力系统继电保护和新能源保护的研究。

Short-term generation forecasting for photovoltaic system based on CAPSO-RNN algorithm

ZHAO Jie, ZHANG Yan-xia   

  1. Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • Received:2012-01-05 Online:2012-04-18 Published:2016-02-29

摘要: 针对光伏系统的发电特性及影响光伏发电的因素,建立基于混沌自适应粒子群优化算法的反馈型神经网络短期发电量预测模型。该预测模型利用混沌自适应粒子群优化算法的全局优化能力初始化反馈性神经网络权值和阈值,可以克服反馈型神经网络收敛速度慢俄且易陷于局部最优等缺点。同时为提高预测精度,采用隶属度函数对温度进行模糊化处理。预测结果表明,建立的预测模型具有较高的精度。

关键词: 光伏系统, 发电量预测, 混沌自适应粒子群优化算法, 反馈型神经网络

Abstract: Considering the characteristics of photovoltaic (PV) systems and various factors which will affect the power generation of PV systems, a short-term generation forecasting model of PV systems was proposed based on recurrent neural network (RNN) and chaos adaptive particle swarm optimization (CAPSO) algorithm. In the model, the weights and thresholds of RNN were optimized by the global optimization ability of CAPSO algorithm in order to avoid the disadvantages of the traditional RNN, such as slow convergence and prone to local minimum. The fuzzy membership function was used to process the data in the temperature evaluation, which can improve generation forecasting precision. Forecasting results show the high accuracy of the proposed model.

Key words: photovoltaic system, generation forecasting, chaos adaptive particle swarm optimization algorithm, recurrent neural network

中图分类号: