[1] ZHANG Q C, LI X, ZHOU C, et al. State-of-health estimation of batteries in an energy storage system based on the actual operating parameters[J]. Journal of Power Sources, 2021, 506: 230162. [2] 杜旭浩, 李秉宇, 苗俊杰, 等. 分布式储能电池运行工况及性能检测分析[J]. 中国电力, 2021, 54(9): 119–124 DU Xuhao, LI Bingyu, MIAO Junjie, et al. Operation condition and performance test analysis of distributed energy storage battery[J]. Electric Power, 2021, 54(9): 119–124 [3] 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73–86, 95 LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55(8): 73–86, 95 [4] 刘大同, 宋宇晨, 武巍, 等. 锂离子电池组健康状态估计综述[J]. 仪器仪表学报, 2020, 41(11): 1–18 LIU Datong, SONG Yuchen, WU Wei, et al. Review of state of health estimation for lithium-ion battery pack[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 1–18 [5] 刘仲明. 锂离子电池组不一致性及热管理的模拟研究[D]. 天津: 天津大学, 2014. LIU Zhongming. Simulation study on inconsistency and thermal management of lithium-ion batteries[D]. Tianjin: Tianjin University, 2014. [6] 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681–692 LI Chaoran, XIAO Fei, FAN Yaxiang, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681–692 [7] 陈晓宇, 耿萌萌, 王乾坤, 等. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995–3002 CHEN Xiaoyu, GENG Mengmeng, WANG Qiankun, et al. Electrochemical impedance feature selection and Gaussian process regression based on the state-of-health estimation method for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2995–3002 [8] 王琳霞, 王涌, 郑荣鹏. 锂离子电芯一致性对电池组影响的研究[J]. 电源技术, 2012, 36(9): 1282–1284 WANG Linxia, WANG Yong, ZHENG Rongpeng. Influences of cell consistency on properties of LIB packs[J]. Chinese Journal of Power Sources, 2012, 36(9): 1282–1284 [9] 刘文军, 欧名勇, 夏向阳, 等. 基于欧姆内阻压降的电池簇不一致性在线监测方法研究[J]. 中国电力, 2022, 55(8): 87–95 LIU Wenjun, OU Mingyong, XIA Xiangyang, et al. Research on online monitoring method of battery cluster inconsistency based on ohmic internal resistance voltage drop[J]. Electric Power, 2022, 55(8): 87–95 [10] 樊亚翔, 肖飞, 许杰, 等. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16): 5661–5670 FAN Yaxiang, XIAO Fei, XU Jie, et al. State of health estimation of lithium-ion batteries based on the partial charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661–5670 [11] 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523–1534 WANG Ping, FAN Lingfeng, CHENG Ze. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523–1534 [12] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105–111, 325 ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105–111, 325 [13] 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145–8154, 8251 YAN Gangui, LI Hongbo, DUAN Shuangming, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145–8154, 8251 [14] SONG Y C, LIU D T, PENG Y. Series-connected lithium-ion battery pack health modeling with cell inconsistency evaluation[C]//2019 IEEE International Instrumentation and Measurement Technology Conference (I2 MTC). Auckland, New Zealand. IEEE, 2019: 1–6. [15] WANG L S, FANG Y Y, WANG L, et al. Understanding discharge voltage inconsistency in lithium-ion cells via statistical characteristics and numerical analysis[J]. IEEE Access, 2020, 8: 84821–84836. [16] ZHANG C P, CHENG G, JU Q, et al. Study on battery pack consistency evolutions during electric vehicle operation with statistical method[J]. Energy Procedia, 2017, 105: 3551–3556. [17] 蔡蓓茹, 杜晓钟. 内阻不一致对动力电池组温度场的影响[J]. 电源技术, 2022, 46(1): 50–53 CAI Beiru, DU Xiaozhong. Influence of internal resistance inconsistency on temperature field of power battery pack[J]. Chinese Journal of Power Sources, 2022, 46(1): 50–53 [18] YANG J F, CAI Y F, MI C. A battery capacity estimation method using surface temperature change under constant-current charge scenario[C]//2021 IEEE Energy Conversion Congress and Exposition (ECCE). Vancouver, BC, Canada. IEEE, 2021: 1687–1691. [19] WANG H W, XIA D F, SI N P, et al. Impact of ambient temperature on the consistency of lithium ion batteries[C]//2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Xi'an, China. IEEE, 2019: 763–766. [20] CORDOBA-ARENAS A, ONORI S, RIZZONI G. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management[J]. Journal of Power Sources, 2015, 279: 791–808. [21] LIU X H, AI W L, NAYLOR MARLOW M, et al. The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs[J]. Applied Energy, 2019, 248: 489–499. [22] 熊一, 詹智红, 柯方超, 等. 基于改进BP神经网络的变电站检修运维成本预测[J]. 电力科学与技术学报, 2021, 36(4): 44–52 XIONG Yi, ZHAN Zhihong, KE Fangchao, et al. Overhaul operation and maintenance cost prediction of substation based on improved BP neural network[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 44–52 [23] 袁佳波, 徐鹏程, 李磊, 等. 基于鸡群优化BP神经网络的变压器油纸绝缘老化预测方法[J]. 电力科学与技术学报, 2020, 35(4): 33–41 YUAN Jiabo, XU Pengcheng, LI Lei, et al. Prediction of transformer oil-paper insulation aging based on BP neural networks with the chicken swarm optimization algorithm[J]. Journal of Electric Power Science and Technology, 2020, 35(4): 33–41
|