中国电力 ›› 2020, Vol. 53 ›› Issue (7): 149-159.DOI: 10.11930/j.issn.1004-9649.201909119

• 智能电网状态估计及其应急仿真专栏 • 上一篇    下一篇

不确定量测下发电机动态状态估计性能分析

赵静波1, 卫志农2, 王晗雯4, 解兵1, 黄梅3, 孟侠1   

  1. 1. 国网江苏省电力有限公司电力科学研究院,江苏 南京 211103;
    2. 河海大学 能源与电气学院,江苏 南京 210032;
    3. 国网江苏省电力有限公司南通供电分公司,江苏 南通 226000;
    4. 国网江苏省电力有限公司宿迁供电分公司,江苏 宿迁 223800
  • 收稿日期:2019-09-20 修回日期:2020-01-31 发布日期:2020-07-05
  • 作者简介:赵静波(1982—),男,高级工程师,从事大电网安全稳定分析研究,E-mail:1418412034@qq.com;卫志农(1962—),男,教授,博士生导师,从事电力系统状态估计、综合能源系统能方面的研究,E-mail:wzn_nj@263.net;王晗雯(1993—),女,工程师,从事电力系统状态估计、电力系统继电保护相关研究,email:whw_hhu@163.com;解兵(1979—),男,高级工程师,从事网源协调技术研究,E-mail:xbcquhv@163.com
  • 基金资助:
    国家自然科学基金资助项目(51607092);江苏省自然科学基金资助项目(BK20171433);国家电网有限公司科技项目(应用于电网运行方式分析的深度强化学习技术研究,5210EF190022)

Performance Analysis of Generator Dynamic State Estimation under Uncertain Measurement

ZHAO Jingbo1, WEI Zhinong2, WANG Hanwen4, XIE Bing1, HUANG Mei3, MENG Xia1   

  1. 1. State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China;
    2. College of Energy and Electric Engineering, Hohai University, Nanjing 210032, China;
    3. State Grid Nantong Power Supply Co., Ltd., Nantong 226000, China;
    4. State Grid Suqian Power Supply Co., Ltd., Suqian 223800, China
  • Received:2019-09-20 Revised:2020-01-31 Published:2020-07-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51607092), Natural Science Foundation of Jiangsu Province (No.BK20171433) and the Science and Technology Project of SGCC (Research on Deep Reinforcement Learning Technology Applied to the Analysis of Power Grid Operation Mode,No.5210EF190022)

摘要: 相量测量单元(PMU)中随机误差不可避免,在实际电网系统中PMU量测数据可能出现延时、重新排序甚至丢失等不确定情况。为准确估计电力系统机电暂态过程中的状态信息,首先建立量测丢失下的发电机动态状态估计模型;然后在某实际电网系统算例中分别采用无迹混合滤波(UMF)、粒子滤波(PF)和所提出的改进粒子滤波(IPF)3种算法对发电机动态状态估计模型进行了仿真试验。仿真结果表明:在不确定量测系统下,改进的IPF算法的滤波性能和抗差性能优于UMF与PF算法,更适用于不确定量测下发电机动态状态估计。

关键词: 改进粒子滤波, 无迹混合滤波, 发电机机电暂态, 动态状态估计, 不确定量测

Abstract: Random errors are unavoidable in phasor measurement unit (PMU), and the PMU measurement data may be uncertain in actual power system, such as delay, reordering or even missing. In order to accurately estimate the state information in the electromechanical transient process of power system, a generator dynamic state estimation model is firstly established under the missing measurement; And then, the model is simulated in an actual power system using the unscented mixture filter (UMF), particle filtering (PF) and the improved particle filtering (IPF) proposed in this paper respectively. The results show that, under uncertain measurement, the proposed IPF is superior to UMF and PF in filtering performance and robust performance, and more applicable to generator dynamic state estimation.

Key words: improved particle filter, unscented mixture filter, generator electromechanical transient, dynamic state estimation, uncertain measurement