中国电力 ›› 2023, Vol. 56 ›› Issue (11): 206-216.DOI: 10.11930/j.issn.1004-9649.202209073
康继光1(), 琚洁华1, 赵艳敏1, 赵裕童1, 白雪涛2, 赵英汝2(
), 景锐2(
)
收稿日期:
2022-09-19
接受日期:
2022-11-29
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
康继光(1971—),男,高级工程师,从事供用电技术、电力市场研究,E-mail: 18918335083@sina.cn基金资助:
Jiguang KANG1(), Jiehua JU1, Yanmin ZHAO1, Yutong ZHAO1, Xuetao BAI2, Yingru ZHAO2(
), Rui JING2(
)
Received:
2022-09-19
Accepted:
2022-11-29
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
分布式可再生能源的发展使得用户逐步转变为产消者,能源社区协调本地能源分配,允许用户交易能源,为能源系统的提效降本提供了新方向。目前能源社区研究或聚焦于探索综合能源为住宅用户供能但未考虑用户间能源交易,或聚焦于用户间的能源交易但未考虑满足多种能源需求。提出一种计及能源社区产消者的综合能源优化方法,将综合能源服务商和用户作为不同利益主体,基于投标响应机制构建能源社区交易模型,以经济性最优为目标探索综合能源系统的最优设计与运行方案。案例表明,用户通过能源交易机制可有效转移负荷、降低用能成本且在交易中获益。同时,能源社区内产消者的能量交易和协调可降低对上层能源系统的依赖,减小本地可再生能源对上层能源系统的冲击。
康继光, 琚洁华, 赵艳敏, 赵裕童, 白雪涛, 赵英汝, 景锐. 计及能源社区产消者的综合能源系统优化方法[J]. 中国电力, 2023, 56(11): 206-216.
Jiguang KANG, Jiehua JU, Yanmin ZHAO, Yutong ZHAO, Xuetao BAI, Yingru ZHAO, Rui JING. Integrated Energy System Optimization Considering EnergyCommunities with Prosumers[J]. Electric Power, 2023, 56(11): 206-216.
碳排放因子/(kg·(kW·h)–1) | ||
天然气 | 电网电能 | |
0.18 | 0.94 |
表 1 环境参数
Table 1 Environmental parameters
碳排放因子/(kg·(kW·h)–1) | ||
天然气 | 电网电能 | |
0.18 | 0.94 |
热电联产机组 | 燃气锅炉 | 热泵 | ||||
发电效率/% | 热电比 | 热效率/% | 性能系数 | |||
42 | 0.9 | 90 | 4.5 | |||
电制冷机组 | 吸收式制冷机组 | 电池储能系统 | ||||
性能系数 | 性能系数 | 充电效率 | 放电效率 | |||
3.0 | 0.9 | 0.98 | 0.98 |
表 2 主要技术性参数
Table 2 Major technical parameters
热电联产机组 | 燃气锅炉 | 热泵 | ||||
发电效率/% | 热电比 | 热效率/% | 性能系数 | |||
42 | 0.9 | 90 | 4.5 | |||
电制冷机组 | 吸收式制冷机组 | 电池储能系统 | ||||
性能系数 | 性能系数 | 充电效率 | 放电效率 | |||
3.0 | 0.9 | 0.98 | 0.98 |
设备 | 投资成本/(元·kW–1) | 年维护成本/(元·kW–1) | ||
热电联产机组 | 4900 | 0.03250 | ||
燃气锅炉 | 800 | 0.00195 | ||
热泵 | 1200 | 0.00800 | ||
电制冷机组 | 1000 | 0.00200 | ||
吸收式制冷机组 | 1500 | 0.00130 | ||
光伏系统 | 4000 | 0.01200 | ||
电池储能系统 | 1800 | 0.00230 |
表 3 设备投资及运维成本
Table 3 Equipment investment and operation & maintenance cost
设备 | 投资成本/(元·kW–1) | 年维护成本/(元·kW–1) | ||
热电联产机组 | 4900 | 0.03250 | ||
燃气锅炉 | 800 | 0.00195 | ||
热泵 | 1200 | 0.00800 | ||
电制冷机组 | 1000 | 0.00200 | ||
吸收式制冷机组 | 1500 | 0.00130 | ||
光伏系统 | 4000 | 0.01200 | ||
电池储能系统 | 1800 | 0.00230 |
时段 | 购电价格/(元·(kW·h)–1) | 售电价格/(元·(kW·h)–1) | ||
00:00—06:00 | 0.39 | 0.35 | ||
06:00—08:00 | 0.75 | 0.52 | ||
08:00—11:00 | 0.98 | 0.52 | ||
11:00—15:00 | 1.16 | 0.62 | ||
15:00—18:00 | 0.98 | 0.52 | ||
18:00—22:00 | 1.16 | 0.62 | ||
22:00—24:00 | 0.39 | 0.35 |
表 4 购售电分时电价
Table 4 Time of use tariff for purchasing and selling electricity
时段 | 购电价格/(元·(kW·h)–1) | 售电价格/(元·(kW·h)–1) | ||
00:00—06:00 | 0.39 | 0.35 | ||
06:00—08:00 | 0.75 | 0.52 | ||
08:00—11:00 | 0.98 | 0.52 | ||
11:00—15:00 | 1.16 | 0.62 | ||
15:00—18:00 | 0.98 | 0.52 | ||
18:00—22:00 | 1.16 | 0.62 | ||
22:00—24:00 | 0.39 | 0.35 |
图 5 典型情景参与能源交易前后电需求、光伏输出及储电设备荷电状态和对应的逐时售电价格、购电价格以及社区内部协调交易价格
Fig.5 Electricity demand, PV output and state of charge before & after energy trading in a typical scenario and corresponding hourly electricity selling price, electricity purchasing price & intra-community electricity trading price
图 8 不同模式下用户与综合能源服务商的年化总成本与年碳总排放量
Fig.8 The annual total cost and annual total carbon emissions of users and integrated energy service providers under different modes
1 | BP中国. BP世界能源统计年鉴: 2021[EB/OL]. 70版. (2022-06-10)[2021-07-08].https://www.bp.com.cn/zh_cn/china/home/news/reports/statistical-review-2021.html. |
2 | 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2022-06-08)[2021-03-13]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. |
3 | 国务院. 2030年前碳达峰行动方案[EB/OL]. (2022-06-09)[2021-10-26]. http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. |
4 | 谭俊丰, 杨苹, 张凡, 等. 考虑能量-辅助服务下的园区综合能源系统多时间尺度优化模型[J]. 中国电力, 2022, 55 (10): 100- 111. |
TAN Junfeng, YANG Ping, ZHANG Fan, et al. Multi-time scale optimization dispatch model of integrated energy system considering energy-auxiliary services[J]. Electric Power, 2022, 55 (10): 100- 111. | |
5 | 张海静, 杨雍琦, 赵昕, 等. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54 (4): 141- 150. |
ZHANG Haijing, YANG Yongqi, ZHAO Xin, et al. Two-level optimal dispatching strategy for regional integrated energy system considering demand response[J]. Electric Power, 2021, 54 (4): 141- 150. | |
6 |
SIDDIQUI O, DINCER I. Design and analysis of a novel solar-wind based integrated energy system utilizing ammonia for energy storage[J]. Energy Conversion and Management, 2019, 195, 866- 884.
DOI |
7 |
JENNINGS M, FISK D, SHAH N. Modelling and optimization of retrofitting residential energy systems at the urban scale[J]. Energy, 2014, 64, 220- 233.
DOI |
8 | 翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53 (8): 9- 18. |
ZHAI Jingjing, WU Xiaobei, FU Zhixin, et al. Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J]. Electric Power, 2020, 53 (8): 9- 18. | |
9 |
PRUITT K A, BRAUN R J, NEWMAN A M. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems[J]. Applied Energy, 2013, 102, 386- 398.
DOI |
10 |
ALI SHAABANI Y, SEIFI A R, KOUHANJANI M J. Stochastic multi-objective optimization of combined heat and power economic/emission dispatch[J]. Energy, 2017, 141, 1892- 1904.
DOI |
11 |
JING R, WANG M, ZHANG Z H, et al. Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties[J]. Applied Energy, 2019, 252, 113424.
DOI |
12 |
MAVROMATIDIS G, OREHOUNIG K, BOLLINGER L A, et al. Ten questions concerning modeling of distributed multi-energy systems[J]. Building and Environment, 2019, 165, 106372.
DOI |
13 |
LODE M L, TE BOVELDT G, COOSEMANS T, et al. A transition perspective on Energy Communities: a systematic literature review and research agenda[J]. Renewable and Sustainable Energy Reviews, 2022, 163, 112479.
DOI |
14 |
MENGELKAMP E, GÄRTTNER J, ROCK K, et al. Designing microgrid energy markets[J]. Applied Energy, 2018, 210, 870- 880.
DOI |
15 |
TUSHAR W, YUEN C, SAHA T K, et al. Peer-to-peer energy systems for connected communities: a review of recent advances and emerging challenges[J]. Applied Energy, 2021, 282, 116131.
DOI |
16 |
YAN Y M, YAN J, SONG M J, et al. Design and optimal siting of regional heat-gas-renewable energy system based on building clusters[J]. Energy Conversion and Management, 2020, 217, 112963.
DOI |
17 |
ZHANG X N, BAO J, WANG R G, et al. Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage[J]. Renewable Energy, 2017, 100, 18- 34.
DOI |
18 | 胡洋, 周长城, 马溪原, 等. P2P模式下产消者交易模型建立与仿真验证[J]. 中国电力, 2019, 52 (11): 44- 50. |
HU Yang, ZHOU Changcheng, MA Xiyuan, et al. Establishment and simulation of prosumers transaction model in P2P mode[J]. Electric Power, 2019, 52 (11): 44- 50. | |
19 |
KHORASANY M, RAZZAGHI R, SHOKRI GAZAFROUDI A. Two-stage mechanism design for energy trading of strategic agents in energy communities[J]. Applied Energy, 2021, 295, 117036.
DOI |
20 | ZHOU S Y, ZOU F H, WU Z, et al. A smart community energy management scheme considering user dominated demand side response and P2P trading[J]. International Journal of Electrical Power & Energy Systems, 2020, 114, 105378. |
21 |
ZHOU Y, WU J Z, SONG G Y, et al. Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community[J]. Applied Energy, 2020, 278, 115671.
DOI |
22 |
WEN L L, ZHOU K L, LI J, et al. Modified deep learning and reinforcement learning for an incentive-based demand response model[J]. Energy, 2020, 205, 118019.
DOI |
23 |
WANG M, YU H, JING R, et al. Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty[J]. Energy Conversion and Management, 2020, 208, 112589.
DOI |
24 |
LI M, MU H L, LI N, et al. Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[J]. Energy, 2016, 99, 202- 220.
DOI |
25 | CEA. City Energy Analyst V3.27. 0[EB/OL] (2022-04-10)[2022-02-01].https://www.cityenergyanalyst.com/try-cea. |
[1] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[2] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
[3] | 胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175. |
[4] | 陆海, 张浩, 陈晓云, 周苏洋. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99. |
[5] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[6] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[7] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[8] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[9] | 景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213. |
[10] | 苏娟, 李拓, 刘峻玮, 夏越, 杜松怀. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J]. 中国电力, 2024, 57(6): 53-68. |
[11] | 陈兴龙, 曹喜民, 陈洁, 刘俊, 张育超, 包洪印. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
[12] | 胡福年, 张彭成, 周小博, 陈军. 计及灵活性资源的综合能源系统源荷协调优化调度[J]. 中国电力, 2024, 57(5): 2-13. |
[13] | 王云龙, 韩璐, 罗树林, 吴涛. 集成电动汽车的家庭电热综合能源系统负荷调度优化[J]. 中国电力, 2024, 57(5): 39-49. |
[14] | 李江南, 程韧俐, 周保荣, 刘稼瑾, 毛田, 赵文猛, 王滔, 黄光磊, 许银亮. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J]. 中国电力, 2024, 57(5): 149-156. |
[15] | 李梓萌, 王天阔, 胡鹏飞, 于彦雪, 杜翼, 蔡期塬. 基于能量枢纽的沼–风–光综合能源系统双层协同优化配置[J]. 中国电力, 2024, 57(4): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||