中国电力 ›› 2023, Vol. 56 ›› Issue (11): 185-196.DOI: 10.11930/j.issn.1004-9649.202211028
收稿日期:
2022-11-08
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
王小飞(1997—),女,硕士研究生,从事综合能源系统中长期规划优化研究,E-mail: 1098865134@qq.com基金资助:
Xiaofei WANG(), Hongbo REN(
), Qiong WU(
), Qifen LI(
)
Received:
2022-11-08
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
在长时间尺度下,内部技术革新、外部环境影响使得综合能源系统的运行场景日益复杂。立足区域能源资源的经济优化配置,兼顾碳减排要求,提出考虑中长期碳减排约束的综合能源系统多阶段动态规划模型。模型可预设灵活的阶段划分规则和不同的碳减排模式,以规划周期内区域整体供能成本最低为目标,采用混合整数线性规划方法进行求解,得到最优设备配置方案。同时,引入学习曲线模型预估规划期内设备成本变化趋势,并考虑氢能、碳交易等新兴碳减排手段。针对典型算例的仿真结果表明:规划阶段划分数的增加可实现更有效的供需动态匹配,系统经济性和减排效果均得到有效提升。同时,不同碳减排约束模式将导致差异化的碳排放路径,需要结合区域减碳目标进行减排约束的合理设置。
王小飞, 任洪波, 吴琼, 李琦芬. 考虑中长期碳减排约束的区域综合能源系统多阶段动态规划[J]. 中国电力, 2023, 56(11): 185-196.
Xiaofei WANG, Hongbo REN, Qiong WU, Qifen LI. Multi-stage Dynamic Plan of Regional Integrated Energy System Considering Medium and Long-Term Carbon Emission Reduction Constraints[J]. Electric Power, 2023, 56(11): 185-196.
设备 | 单位容量成本/ (元·kW–1) | 固定运维成本/ (元·(kW·y)–1) | 可变运维成本/ (元·(kW·h)–1) | 效率 | 寿命/ 年 | |||||
光伏 | 3500.0 | 100.500 | 0.2070 | 0.28 | 20 | |||||
内燃机 | 8280.0 | 124.200 | 0.0900 | 0.39/ 0.36 | 20 | |||||
锅炉 | 910.8 | 138.000 | 0.0138 | 0.89 | 20 | |||||
热泵 | 2277.0 | 138.000 | 0.0138 | 3.20 | 10 | |||||
吸收式 制冷机 | 2656.5 | 138.000 | 0.0138 | 0.70 | 15 | |||||
电制冷器 | 1062.6 | 138.000 | 0.0138 | 4.0 | 15 | |||||
燃料电池 | 10070.6 | 29.670 | 0.2415 | 0.42/ 0.52 | 10 | |||||
锂电池 | 5030.1 | 51.405 | 0.0157 | 0.92 | 20 | |||||
蓄热罐 | 138.0 | 13.800 | 0.0157 | 0.85 | 20 | |||||
蓄冷罐 | 138.0 | 13.800 | 0.0157 | 0.85 | 20 |
表 1 初始年度各设备技术和经济参数
Table 1 Technical and economic parameters of each equipment in initial year
设备 | 单位容量成本/ (元·kW–1) | 固定运维成本/ (元·(kW·y)–1) | 可变运维成本/ (元·(kW·h)–1) | 效率 | 寿命/ 年 | |||||
光伏 | 3500.0 | 100.500 | 0.2070 | 0.28 | 20 | |||||
内燃机 | 8280.0 | 124.200 | 0.0900 | 0.39/ 0.36 | 20 | |||||
锅炉 | 910.8 | 138.000 | 0.0138 | 0.89 | 20 | |||||
热泵 | 2277.0 | 138.000 | 0.0138 | 3.20 | 10 | |||||
吸收式 制冷机 | 2656.5 | 138.000 | 0.0138 | 0.70 | 15 | |||||
电制冷器 | 1062.6 | 138.000 | 0.0138 | 4.0 | 15 | |||||
燃料电池 | 10070.6 | 29.670 | 0.2415 | 0.42/ 0.52 | 10 | |||||
锂电池 | 5030.1 | 51.405 | 0.0157 | 0.92 | 20 | |||||
蓄热罐 | 138.0 | 13.800 | 0.0157 | 0.85 | 20 | |||||
蓄冷罐 | 138.0 | 13.800 | 0.0157 | 0.85 | 20 |
情景 | 子情景 | 2 阶段 | 4 阶段 | 20 阶段 | 减排 10% | 减排 20% | 减排30% | 碳交易 | ||||||||
1 | A | √ | ||||||||||||||
B | √ | |||||||||||||||
2 | A | √ | ||||||||||||||
B | √ | √ | ||||||||||||||
C | √ | √ | ||||||||||||||
D | √ | √ | ||||||||||||||
3 | A | √ | √ | √ | ||||||||||||
B | √ | 末年排放为 初始年的30% | √ |
表 2 情景设置情况
Table 2 Scenario settings
情景 | 子情景 | 2 阶段 | 4 阶段 | 20 阶段 | 减排 10% | 减排 20% | 减排30% | 碳交易 | ||||||||
1 | A | √ | ||||||||||||||
B | √ | |||||||||||||||
2 | A | √ | ||||||||||||||
B | √ | √ | ||||||||||||||
C | √ | √ | ||||||||||||||
D | √ | √ | ||||||||||||||
3 | A | √ | √ | √ | ||||||||||||
B | √ | 末年排放为 初始年的30% | √ |
1 |
贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39 (7): 198- 207.
DOI |
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39 (7): 198- 207.
DOI |
|
2 | HANNEGAN B, O'MALLEY M, KROPOSKI B, et al. Energy systems integration: defining and describing the value proposition[J], Alexandria: International Institute for Energy Systems Integration, 2016. |
3 | 吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41 (12): 4001- 4021. |
LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Review on district-level integrated energy system planning considering interconnection and interaction[J]. Proceedings of the CSEE, 2021, 41 (12): 4001- 4021. | |
4 | 梁涛, 尹晓东, 刘亚祥. 面向投资收益的综合能源系统鲁棒优化配置规划[J]. 中国电力, 2023, 56 (4): 156- 166. |
LIANG Tao, YIN Xiaodong, LIU Yaxiang. Robust optimal configuration planning of integrated energy system for return on investment[J]. Electric Power, 2023, 56 (4): 156- 166. | |
5 | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46 (8): 189- 207. |
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46 (8): 189- 207. | |
6 | 孙子茹, 艾芊, 居来提·阿不力孜, 等. 考虑季节性氢储及期货式碳交易的综合能源系统年度规划研究[J]. 中国电力, 2022, 50 (8): 2- 13. |
SUN Ziru, AI Qian, JULAITI Abuliz, et al. Annual planning study of integrated energy system considering seasonal hydrogen storage and futures carbon trading[J]. Electric Power, 2022, 50 (8): 2- 13. | |
7 |
王莉, 曾顺奇, 黄晓彤, 等. 多能互补的分布式供能系统的超结构模型及运行策略优化设计[J]. 热能动力工程, 2020, 35 (8): 9- 17.
DOI |
WANG Li, ZENG Shunqi, HUANG Xiaotong, et al. Superstructure model and optimization design of operation strategy for distributed energy system with multiple complementary energy[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (8): 9- 17.
DOI |
|
8 | 卢炳文, 魏震波, 魏平桉, 等. 考虑多重区间不确定性的用户侧综合能源系统双层优化配置[J]. 中国电力, 2022, 55 (3): 193- 202. |
LU Bingwen, WEI Zhenbo, WEI Pingan, et al. Two-level optimal configuration of user-side integrated energy system considering interval uncertainties[J]. Electric Power, 2022, 55 (3): 193- 202. | |
9 | 张昊, 李大华, 田禾, 等. 基于If-Then-Else规则的热电联产系统能量调度方法[J]. 热能动力工程, 2022, 37 (6): 152- 162. |
ZHANG Hao, LI Dahua, TIAN He, et al. Energy dispatching method for combined heat and power system based on If-Then-Else rules[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37 (6): 152- 162. | |
10 | 亢猛, 钟祎勍, 石鑫, 等. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术, 2023, 44 (1): 25- 35. |
KANG Meng, ZHONG Yiqing, SHI Xin, et al. Research on two-stage optimization approach of community integrated energy system considering load supply reliability[J]. Power Generation Technology, 2023, 44 (1): 25- 35. | |
11 |
MENDES G, IOAKIMIDIS C, FERRÃO P. On the planning and analysis of Integrated Community Energy Systems: a review and survey of available tools[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (9): 4836- 4854.
DOI |
12 | 程林, 张靖, 黄仁乐, 等. 基于多能互补的综合能源系统多场景规划案例分析[J]. 电力自动化设备, 2017, 37 (6): 282- 287. |
CHENG Lin, ZHANG Jing, HUANG Renle, et al. Case analysis of multi-scenario planning based on multi-energy complementation for integrated energy system[J]. Electric Power Automation Equipment, 2017, 37 (6): 282- 287. | |
13 | ZHENG X, QIU Y, ZHAN X, et al. Optimization based planning of urban energy systems: Retrofitting a Chinese industrial park as a case-study[J]. Energy, 2017, 139 (15): 31- 41. |
14 |
KOLTSAKLIS N E, LIU P, GEORGIADIS M C. An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response[J]. Energy, 2015, 82, 865- 888.
DOI |
15 | 曹严, 穆云飞, 贾宏杰, 等. 考虑建设时序的园区综合能源系统多阶段规划[J]. 中国电机工程学报, 2020, 40 (21): 6815- 6828. |
CAO Yan, MU Yunfei, JIA Hongjie, et al. Multi-stage planning of park-level integrated energy system considering construction time sequence[J]. Proceedings of the CSEE, 2020, 40 (21): 6815- 6828. | |
16 | 邹磊, 唐一铭, 刘祝平, 等. 考虑分期规划与设备替换的园区型综合能源系统最优配置方法[J]. 中国电力, 2021, 54 (9): 176- 186. |
ZOU Lei, TANG Yiming, LIU Zhuping, et al. Optimal design method of integrated energy systems considering staged planning and equipment replacement[J]. Electric Power, 2021, 54 (9): 176- 186. | |
17 |
MAVROMATIDIS G, PETKOV I. MANGO: a novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems[J]. Applied Energy, 2021, 288, 116585.
DOI |
18 |
LIU Z M, ZHAO Y R, WANG X N. Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response[J]. Applied Energy, 2020, 279, 115819.
DOI |
19 |
XIE S W, HU Z J, WANG J Y, et al. The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks[J]. Applied Energy, 2020, 269, 115006.
DOI |
20 |
VAN BEUZEKOM I, HODGE B M, SLOOTWEG H. Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems[J]. Applied Energy, 2021, 292, 116880.
DOI |
21 | 方仍存, 杨洁, 周奎, 等. 计及全生命周期碳成本的园区综合能源系统优化规划方法[J]. 中国电力, 2022, 55 (12): 135- 146. |
FANG Rengcun, YANG Jie, ZHOU Kui, et al. An optimal planning method for park IES considering life cycle carbon cost[J]. Electric Power, 2022, 55 (12): 135- 146. | |
22 | 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41 (9): 148- 155. |
CHEN Zhi, HU Zhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41 (9): 148- 155. | |
23 | 张岚, 王永利, 陶思艺, 等. 考虑外部碳交易效益的综合能源系统多阶段规划[J]. 云南电力技术, 2022, 50 (1): 16- 23. |
ZHANG Lan, WANG Yongli, TAO Siyi, et al. Multi-stage planning of comprehensive energy system considering external carbon trading benefits[J]. Yunnan Electric Power, 2022, 50 (1): 16- 23. | |
24 |
牛衍亮, 黄如宝, 常惠斌. 基于学习曲线的能源技术成本变化[J]. 管理工程学报, 2013, 27 (3): 74- 80.
DOI |
NIU Yanliang, HUANG Rubao, CHANG Huibin. The change of energy technology cost based on learning curve[J]. Journal of Industrial Engineering and Engineering Management, 2013, 27 (3): 74- 80.
DOI |
|
25 | 景锐, 赵英汝. 燃料电池热电联产技术应用于公共建筑的可行性[J]. 暖通空调, 2017, 47 (4): 29- 35. |
JING Rui, ZHAO Yingru. Feasibility of fuel cell-based CHP systems applied to public buildings[J]. Heating Ventilating & Air Conditioning, 2017, 47 (4): 29- 35. | |
26 | LIU Z M, LIM M Q, KRAFT M, et al. Simultaneous design and operation optimization of renewable combined cooling heating and power systems[J]. AIChE Journal, 2020, 66(12). |
27 |
汉京晓, 白伟, 冯俊小, 等. 氢能在供热领域的研究与分析[J]. 区域供热, 2021, (3): 45- 52, 84.
DOI |
HAN Jingxiao, BAI Wei, FENG Junxiao, et al. Research and analysis of hydrogen energy in heating field[J]. District Heating, 2021, (3): 45- 52, 84.
DOI |
|
28 | 马亚军. 双碳背景下电网电力排放因子预测分析与模型研究[J]. 中国认证认可, 2022(4): 13–15. |
MA Yajun. Power grid emission factor prediction, analysis and model research under dual-carbon background[J], China certification and accreditation, 2022(4): 13–15. |
[1] | 许光, 匡军, 宋红艳, 张泽虎, 臧祥宇, 张念上, 张玉敏. 面向低压配电台区拓扑结构采集的馈线终端优化配置方法[J]. 中国电力, 2025, 58(3): 151-161. |
[2] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[3] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
[4] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[5] | 胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175. |
[6] | 陆海, 张浩, 陈晓云, 周苏洋. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99. |
[7] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[8] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[9] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[10] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[11] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[12] | 景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213. |
[13] | 苏娟, 李拓, 刘峻玮, 夏越, 杜松怀. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J]. 中国电力, 2024, 57(6): 53-68. |
[14] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[15] | 陈兴龙, 曹喜民, 陈洁, 刘俊, 张育超, 包洪印. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||