[1] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1–18,369 LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1–18,369 [2] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444–451 WU Zhiquan, JIA Chunchao, CHEN Lei, et al. Research on innovative direction of energy storage in new power system construction[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 444–451 [3] 明彤彤, 赵晶, 王晓磊, 等. 基于改进LSTM的脉冲大倍率工况下锂电池SOC估计[J]. 电力系统保护与控制, 2021, 49(8): 144–150 MING Tongtong, ZHAO Jing, WANG Xiaolei, et al. SOC estimation of a lithium battery under high pulse rate condition based on improved LSTM[J]. Power System Protection and Control, 2021, 49(8): 144–150 [4] 孙丙香, 苏晓佳, 马仕昌, 等. 基于低频阻抗谱和健康特征融合的锂离子电池健康状态主动探测方法研究[J]. 电力系统保护与控制, 2022, 50(7): 23–30 SUN Bingxiang, SU Xiaojia, MA Shichang, et al. An active detection method of li-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7): 23–30 [5] 周炜航, 叶青, 叶蕾, 等. 锂离子电池内温度场健康状态分布式光纤原位监测技术研究[J]. 中国激光, 2020, 47(12): 1204002 ZHOU Weihang, YE Qing, YE Lei, et al. Distributed optical fiber in situ monitoring technology for a healthy temperature field in lithium ion batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002 [6] WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 2017, 5: 21286–21295. [7] ZHANG X, WANG Y J, LIU C, et al. A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack[J]. Journal of Power Sources, 2017, 343: 216–225. [8] 黄凯, 郭永芳, 李志刚. 动力锂离子电池荷电状态估计综述[J]. 电源技术, 2018, 42(9): 1398–1401 HUANG Kai, GUO Yongfang, LI Zhigang. Review of state of charge estimation methods for power lithium-ion battery[J]. Chinese Journal of Power Sources, 2018, 42(9): 1398–1401 [9] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968–3978 GUO Yongfang, HUANG Kai, LI Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968–3978 [10] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105–111,325 ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105–111,325 [11] 朱志祥. 基于内阻模型的锂电池健康状态评价[D]. 绵阳: 西南科技大学, 2020. ZHU Zhixiang. Evaluation of health status of lithium battery based on internal resistance mode[D]. Mianyang: Southwest University of Science and Technology, 2020. [12] 郝雪玲. 锂离子电池健康状态多指标融合和剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. HAO Xueling. Study on multi-health indicators fusion and remaining useful life prediction for lithium-ion batteries[D]. Harbin: Harbin University of Science and Technology, 2019. [13] TONG S J, KLEIN M P, PARK J W. On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation[J]. Journal of Power Sources, 2015, 293: 416–428. [14] 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145–8154,8251 YAN Gangui, LI Hongbo, DUAN Shuangming, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145–8154,8251 [15] 韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038–4044 WEI Haiyan, CHEN Xiaojie, Lü Zhiqiang, et al. Online estimation of lithium-ion battery state of health using grey neural network[J]. Power System Technology, 2017, 41(12): 4038–4044 [16] 姜君. 锂离子电池串并联成组优化研究[D]. 北京: 北京交通大学, 2013. JIANG Jun. Research on series-parallel grouping optimization of lithium-ion batteries[D]. Beijing: Beijing Jiaotong University, 2013. [17] 熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014. XIONG Rui. Estimation of battery pack state for electric vehicles using model-data fusion approach[D]. Beijing: Beijing Institute of Technology, 2014. [18] 王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836–1847 Wang Shuai, Yin Zhongdong, Zheng Zhong, et al. Representation of influence factors for battery module consistency on discharge voltage curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836–1847 [19] 安富强. 电动车用锂离子电池的一致性研究[D]. 北京: 北京科技大学, 2017. AN Fuqiang. The study on the variation of lithium-ion cells for electric vehicles[D]. Beijing: University of Science and Technology Beijing, 2017. [20] 罗军, 牛哲荟, 田刚领, 等. 储能电池组的均衡性研究[J]. 电池, 2019, 49(5): 410–413 LUO Jun, NIU Zhehui, TIAN Gangling, et al. Equalization research of energy storage battery pack[J]. Battery Bimonthly, 2019, 49(5): 410–413 [21] 刘大同, 宋宇晨, 武巍, 等. 锂离子电池组健康状态估计综述[J]. 仪器仪表学报, 2020, 41(11): 1–18 LIU Datong, SONG Yuchen, WU Wei, et al. Review of state of health estimation for lithium-ion battery pack[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 1–18 [22] 丁雨, 于艾清, 高纯. 基于改进一致性算法的独立光储直流微电网电压稳定能量协调策略[J]. 中国电力, 2022, 55(3): 74–79 DING Yu, YU Aiqing, GAO Chun. An Energy Coordination Strategy for Island DC Microgrid With Photovoltaic and Storage System Based on Improved Consensus Algorithm[J]. Electric Power, 2022, 55(3): 74–79 [23] 李建林, 李雅欣, 黄碧斌, 等. 退役动力电池一致性评估及均衡策略研究[J]. 电力系统保护与控制, 2021, 49(21): 1–7 LI Jianli, LI Yaxin, HUANG Bibin, et al. Research on consistency evaluation and control strategy of a retired power battery[J]. Power System Protection and Control, 2021, 49(21): 1–7
|