中国电力 ›› 2022, Vol. 55 ›› Issue (10): 209-218.DOI: 10.11930/j.issn.1004-9649.202112071

• 信息与通信 • 上一篇    下一篇

面向5G边缘计算网络的联合需求响应与任务卸载策略

陆旭1, 陈影1, 许中平2, 张海全1, 慕春芳1, 陈恺3, 孙毅3   

  1. 1. 国网内蒙古东部电力有限公司 调度控制调控中心,内蒙古 呼和浩特 010010;
    2. 北京国网信通埃森哲信息技术有限公司,北京 100080;
    3. 华北电力大学 电气与电子工程学院,北京 102206
  • 收稿日期:2021-12-29 修回日期:2022-07-05 发布日期:2022-10-20
  • 作者简介:陆旭(1970—),男,硕士,高级工程师,从事信息通信技术研究,E-mail:luxu@md.sgcc.com.cn;陈影(1984—),女,硕士,高级工程师,从事通信运行管理,E-mail:chenying@md.sgcc.com.cn;许中平(1974—),男,硕士,工程师,从事能源互联网信息技术研究,E-mail:xuzhongping@sgitg.sgcc.com.cn;张海全(1974—),男,高级工程师,从事通信运行管理,E-mail:zhanghaiquan@md.sgcc.com.cn;慕春芳(1988—),女,硕士,高级工程师,从事通信运行管理,E-mail:muchunfang@md.sgcc.com.cn;陈恺(1997—),男,通信作者,博士研究生,从事边缘计算与电力通信研究,E-mail:kulewubi@163.com;孙毅(1972—),男,教授,从事能源互联网及其信息通信技术等研究,E-mail:sy@ncepu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(SGMD0000DDJS2000351)。

Joint Demand Response and Task Offloading Strategy for 5G Edge Computing Network

LU Xu1, CHEN Ying1, XU Zhongping2, ZHANG Haiquan1, MU Chunfang1, CHEN Kai3, SUN Yi3   

  1. 1. State Grid East Inner Mongolia Electric Power Co., Ltd., Huhhot 010010, China;
    2. Beijing SGITG-Accenture Information Technology, Beijing 100080, China;
    3. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2021-12-29 Revised:2022-07-05 Published:2022-10-20
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.SGMD0000DDJS2000351).

摘要: 随着物联网通信计算需求激增,5G通信与边缘计算网络逐步成为新兴的高能耗负荷。针对5G边缘计算网络用电成本高的问题,提出了联合任务卸载与需求响应策略。所提策略基于任务卸载与基站储能单元充放电动作,在高电价时段联合优化计算、通信与储能资源分配或者牺牲部分时延性能以削减用电成本,在分时电价机制中为电网提供响应能力。针对优化目标为混合整数非线性规划问题,进一步提出结合网络场景划分的广义benders分解算法,将问题解耦为任务卸载决策主问题与充放电以及资源分配子问题,降低问题求解复杂度。仿真结果表明:相比于仅考虑任务卸载和仅考虑通信资源调度的响应策略,所提策略降低了用电成本并避免时延性能恶化。

关键词: 能源互联网, 5G, 边缘计算, 任务卸载, 资源分配, 需求响应

Abstract: Along with the dramatic increase in demand for IoT communication computing, the 5G communication and edge computing network gradually become the emerging high energy consumption load. In response to the high electricity bill of 5G edge computing network, this paper proposes a joint task offloading and demand response strategy for 5G edge computing network. By jointly adjusting the allocation of communication and computing resources, the task offloading decision and the charging/discharging of 5G base station battery, the proposed strategy can reduce the electric bill by transferring the task loads or sacrificing the delay performance, and provide considerable response capacity to power grid. To solve the Mixed Integer Non-linear Programming (MINLP) problem, this paper further proposes a Generalized Benders Decomposition (GBD) algorithm based on network scenario division. By decomposing the problem into a master problem of task offloading decision and a primal problem of charging/discharging and resource allocation , the complexity of the model is reduced. The simulation results show that compared with the response strategy that only considers task offloading or communication resource allocation, the proposed strategy reduces the electric bill and avoid the deterioration of delay performance.

Key words: energy Internet, 5G, edge computing, task offloading, resource allocation, demand response