[1] 张宁, 杨经纬, 王毅, 等. 面向泛在电力物联网的5G通信: 技术原理与典型应用[J]. 中国电机工程学报, 2019, 39(14): 4015–4024 ZHANG Ning, YANG Jingwei, WANG Yi, et al. 5G communication for the ubiquitous Internet of Things in electricity: technical principles and typical applications[J]. Proceedings of the CSEE, 2019, 39(14): 4015–4024 [2] 李彬, 贾滨诚, 陈宋宋, 等. 边缘计算在电力供需领域的应用展望[J]. 中国电力, 2018, 51(11): 154–162 LI Bin, JIA Bincheng, CHEN Songsong, et al. Prospect of application of edge computing in the field of supply and demand[J]. Electric Power, 2018, 51(11): 154–162 [3] 单葆国, 冀星沛, 姚力, 等. 能源高质量发展下中国电力供需格局演变趋势[J]. 中国电力, 2021, 54(11): 1–9,18 SHAN Baoguo, JI Xingpei, YAO Li, et al. Evolving tendency of electric supply and demand pattern under the circumstances of high-quality energy development[J]. Electric Power, 2021, 54(11): 1–9,18 [4] 中国电子信息产业发展研究院. 中国5G发展和经济社会影响白皮书(2021年) [EB/OL]. (2021-12-28)[2022-01-05]. https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5 MzU0 NjMwNQ==&action=getalbum&album_id=1796446442295705601#wechat_redirect. [5] 谭萌, 彭艺, 马戎, 等. 5G对中国碳排放峰值的影响研究[J]. 中国环境科学, 2021, 41(3): 1447–1454 TAN Meng, PENG Yi, MA Rong, et al. Influence of 5G technology on the peak of China's carbon emission[J]. China Environmental Science, 2021, 41(3): 1447–1454 [6] 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应: 关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540–5552 YONG Pei, ZHANG Ning, CI Song, et al. 5G communication base stations participating in demand response: key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540–5552 [7] 刘友波, 王晴, 曾琦, 等. 能源互联网背景下5G网络能耗管控关键技术及展望[J]. 电力系统自动化, 2021, 45(12): 174–183 LIU Youbo, WANG Qing, ZENG Qi, et al. Key technologies and prospects of energy consumption management for 5G network in background of energy Internet[J]. Automation of Electric Power Systems, 2021, 45(12): 174–183 [8] 周宸宇, 冯成, 王毅. 基于移动用户接入控制的5G通信基站需求响应[J]. 中国电机工程学报, 2021, 41(16): 5452–5462 ZHOU Chenyu, FENG Cheng, WANG Yi. Demand response of 5G communication base stations based on admission control of mobile users[J]. Proceedings of the CSEE, 2021, 41(16): 5452–5462 [9] 祝凯. 共建“5G+智能电网”生态圈[EB/OL]. (2020-06-30) [2021-10-27]. http://www.csg.cn/xwzx/2020/gsyw/202006/t20200630_311951.html. [10] SAXENA N, ROY A, KIM H. Efficient 5G small cell planning with eMBMS for optimal demand response in smart grids[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1471–1481. [11] SHUO W, XING Z, ZHI Y, et al. Cooperative edge computing with sleep control under nonuniform traffic in mobile edge networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4295–4306. [12] WU H M, WOLTER K, JIAO P F, et al. EEDTO: an energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-edge-cloud orchestrated computing[J]. IEEE Internet of Things Journal, 2021, 8(4): 2163–2176. [13] CUI E F, YANG D, ZHANG H K, et al. Improving power stability of energy harvesting devices with edge computing-assisted time fair energy allocation[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(1): 540–551. [14] WANG F, XU J, CUI S G. Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2443–2459. [15] MUNIR M S, ABEDIN S F, TRAN N H, et al. When edge computing meets microgrid: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2019, 6(5): 7360–7374. [16] PERIN G, BERNO M, ERSEGHE T, et al. Towards sustainable edge computing through renewable energy resources and online, distributed and predictive scheduling[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 306–321. [17] LIU Y, XIE S L, YANG Q Y, et al. Joint computation offloading and demand response management in mobile edge network with renewable energy sources[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15720–15730. [18] CUI G M, HE Q, XIA X Y, et al. Demand response in NOMA-based mobile edge computing: a two-phase game-theoretical approach[J]. IEEE Transactions on Mobile Computing, 2021, 99: 1. [19] CHEN X J, WEN H F, NI W, et al. Distributed online optimization of edge computing with mixed power supply of renewable energy and smart grid[J]. IEEE Transactions on Communications, 2022, 70(1): 389–403. [20] YIN F F, ZENG M Y, ZHANG Z L, et al. Coded caching for smart grid enabled HetNets with resource allocation and energy cooperation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12058–12071. [21] CHENG Y L, ZHANG J, YANG L X, et al. Distributed green offloading and power optimization in virtualized small cell networks with mobile edge computing[J]. IEEE Transactions on Green Communications and Networking, 2020, 4(1): 69–82. [22] SONG M, LEE Y, KIM K. Reward-oriented task offloading under limited edge server power for multiaccess edge computing[J]. IEEE Internet of Things Journal, 2021, 8(17): 13425–13438. [23] DARAGHMEH M, AL RIDHAWI I, ALOQAILY M, et al. A power management approach to reduce energy consumption for edge computing servers[C]//2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). Rome, Italy. IEEE, 2019: 259–264. [24] CHENY H, ZHAO D M, CHENY Q, et al. Joint computation offloading and radio resource allocations in wireless cellular networks[C]//2018 10 th International Conference on Wireless Communications and Signal Processing (WCSP). Hangzhou, China. IEEE, 2018: 1–6. [25] 孙毅, 胡亚杰, 郑顺林, 等. 考虑用户响应特性的综合需求响应优化激励策略[J]. 中国电机工程学报, 2022, 42(4): 1402–1413 SUN Yi, HU Yajie, ZHENG Shunlin, et al. Integrated demand response optimization incentive strategy considering users' response characteristics[J]. Proceedings of the CSEE, 2022, 42(4): 1402–1413 [26] GEOFFRION A M. Generalized benders decomposition[J]. Journal of Optimization Theory and Applications, 1972, 10(4): 237–260.
|