[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015. [2] 舒印彪, 张运洲. 优化我国能源输送方式研究[J]. 中国电力, 2007(11): 4-8 SHU Yinbiao, ZHANG Yunzhou. Research on the optimization of energy transportation mode in China[J]. Electric Power, 2007(11): 4-8 [3] PYE S, SABIO N, STRACHAN N. An integrated systematic analysis of uncertainties in UK energy transition pathways[J]. Energy Policy, 2015, 87: 673-684. [4] 国家发展改革委, 国家能源局. 能源生产和消费革命战略(2016—2030)[R]. 北京: 国家发展改革委, 国家能源局, 2016. [5] 国家发展改革委, 国家能源局. 电力发展“十三五”规划[R]. 北京: 国家发展改革委, 国家能源局, 2016. [6] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 20-27 CHEN Guoping, LI Mingjie, XU Tao, et al. Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1): 20-27 [7] 辛耀中, 石俊杰, 周京阳, 等. 智能电网调度控制系统现状与技术展望[J]. 电力系统自动化, 2015, 39(1): 2-8 XIN Yaozhong, SHI Junjie, ZHOU Jingyang, et al. Technology development trends of smart grid dispatching and control systems[J]. Automation of Electric Power Systems, 2015, 39(1): 2-8 [8] 许洪强, 姚建国, 於益军, 等. 支撑一体化大电网的调度控制系统架构及关键技术[J]. 电力系统自动化, 2018, 42(6): 1-8 XU Hongqiang, YAO Jianguo, YU Yijun, et al. Architecture and key technologies of dispatch and control system supporting integrated bulk power grids[J]. Automation of Electric Power Systems, 2018, 42(6): 1-8 [9] 杨胜春, 汤必强, 姚建国, 等. 基于态势感知的电网自动智能调度架构及关键技术[J]. 电网技术, 2014, 38(1): 33-39 YANG Shengchun, TANG Biqiang, YAO Jianguo, et al. Architecture and key technologies for situational awareness based automatic intelligent dispatching of power grid[J]. Power System Technology, 2014, 38(1): 33-39 [10] 王秀丽, 李骏, 黄镔, 等. 促进风电消纳的区省两级电力系统调度模型[J]. 电网技术, 2015, 39(7): 1833-1838 WANG Xiuli, LI Jun, HUANG Bin, et al. A two-stage optimal dispatching model for provincial and regional power grids connected with wind farms to promote accommodation of wind power[J]. Power System Technology, 2015, 39(7): 1833-1838 [11] 刘纯, 黄越辉, 张楠, 等. 基于智能电网调度控制系统基础平台的新能源优化调度[J]. 电力系统自动化, 2015, 39(1): 159-163 LIU Chun, HUANG Yuehui, ZHANG Nan, et al. Renewable energy dispatching based on smart grid dispatching and control system platform[J]. Automation of Electric Power Systems, 2015, 39(1): 159-163 [12] 门向阳, 曹军, 王泽森, 等. 能源互联微网型多能互补系统的构建与储能模式分析[J]. 中国电机工程学报, 2018, 38(19): 5727-5737, 5929 MEN Xiangyang, CAO Jun, WANG Zesen, et al. The constructing of multi-energy complementary system of energy Internet microgrid and energy storage model analysis[J]. Proceedings of the CSEE, 2018, 38(19): 5727-5737, 5929 [13] 邹斌, 赵妍, 李晓刚, 等. 跨省跨区清洁能源消纳补偿的市场机制研究[J]. 电网技术, 2016, 40(2): 595-601 ZOU Bin, ZHAO Yan, LI Xiaogang, et al. Market mechanism research on trans-provincial and trans-regional clean energy consumption and compensation[J]. Power System Technology, 2016, 40(2): 595-601 [14] 王耀华, 焦冰琦, 张富强, 等. 计及高比例可再生能源运行特性的中长期电力发展分析[J]. 电力系统自动化, 2017, 41(21): 9-16 WANG Yaohua, JIAO Bingqi, ZHANG Fuqiang, et al. Medium and long-term electric power development considering operating characteristics of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(21): 9-16 [15] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205 ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205 [16] 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986 LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986 [17] 徐帆, 涂孟夫, 李利利, 等. 促进清洁能源消纳的全网一体化发电计划模型及求解[J]. 电力系统自动化, 2019, 43(19): 185-193 XU Fan, TU Mengfu, LI Lili, et al. Scheduling model and solution of integrated power generation in power grid for clean energy accommodation[J]. Automation of Electric Power Systems, 2019, 43(19): 185-193 [18] 刘振亚, 张启平. 国家电网发展模式研究[J]. 中国电机工程学报, 2013, 33(7): 1-10, 25 LIU Zhenya, ZHANG Qiping. Study on the development mode of national power grid of China[J]. Proceedings of the CSEE, 2013, 33(7): 1-10, 25 [19] 舒印彪, 薛禹胜, 蔡斌, 等. 关于能源转型分析的评述 (一)转型要素及研究范式[J]. 电力系统自动化, 2018, 42(9): 1-15 SHU Yinbiao, XUE Yusheng, CAI Bin, et al. A review of energy transition analysis part one elements and paradigms[J]. Automation of Electric Power Systems, 2018, 42(9): 1-15 [20] 舒印彪, 薛禹胜, 蔡斌, 等. 关于能源转型分析的评述 (二)不确定性及其应对[J]. 电力系统自动化, 2018, 42(10): 1-12 SHU Yinbiao, XUE Yusheng, CAI Bin, et al. A review of energy transition analysis part two uncertainties and approaches[J]. Automation of Electric Power Systems, 2018, 42(10): 1-12 [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 电网运行准则 GB/T 31464—2015[S]. 北京: 中国标准出版社, 2015. [22] 舒印彪, 汤涌, 孙华东. 电力系统安全稳定标准研究[J]. 中国电机工程学报, 2013, 33(25): 1-9 SHU Yinbiao, TANG Yong, SUN Huadong. Research on power system security and stability standards[J]. Proceedings of the CSEE, 2013, 33(25): 1-9 [23] 国家电网公司. Q/GDW 404—2010 国家电网安全稳定计算技术规范[S]. 北京: 国家电网公司, 2010. [24] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9 SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9 [25] 葛立青, 刘青红, 王建锋, 等. 计及样本容量合理性的风电功率预测考核算法[J]. 电力系统自动化, 2017, 41(18): 118-123, 136 GE Liqing, LIU Qinghong, WANG Jianfeng, et al. Assessment algorithm for wind power prediction considering rationality of sample size[J]. Automation of Electric Power Systems, 2017, 41(18): 118-123, 136 [26] 汪惟源, 窦飞, 程锦闽, 等. 一种风光联合出力概率模型建模方法[J]. 电力系统保护与控制, 2020, 48(10): 22-29 WANG Weiyuan, DOU Fei, CHENG Jinmin, et al. A modeling method for a wind and photovoltaic joint power probability model[J]. Power System Protection and Control, 2020, 48(10): 22-29 [27] 陈嘉梁, 严正, 徐潇源, 等. 大规模新能源接入背景下小干扰稳定分析中状态矩阵特征值的灵敏度分析[J]. 南方电网技术, 2020, 14(2): 55-61 CHEN Jialiang, YAN Zheng, XU Xiaoyuan, et al. Sensitivity analysis of eigenvalue of status matrix in small-signal stability analysis considering large-scale renewable energy integration[J]. Southern Power System Technology, 2020, 14(2): 55-61 [28] 薛禹胜, 郁琛, 赵俊华, 等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39(6): 141-151 XUE Yusheng, YU Chen, ZHAO Junhua, et al. A review on Short-term and Ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39(6): 141-151 |