[1] 中国电力企业联合会. 中国电力行业年度发展报告 2020[M]. 北京: 中国建材工业出版社, 2020. [2] CAI R X, ZHANG H, ZHANG M, et al. Development and application of the design principle of fluidization state specification in CFB coal combustion[J]. Fuel Processing Technology, 2018, 174: 41-52. [3] 岳光溪, 吕俊复, 徐鹏, 等. 循环流化床燃烧发展现状及前景分析[J]. 中国电力, 2016, 49(1): 1-13 YUE Guangxi, LU Junfu, XU Peng, et al. The up-to-date development and future of circulating fluidized bed combustion technology[J]. Electric Power, 2016, 49(1): 1-13 [4] 张缦, 蔡润夏, 姜孝国, 等. 660 MW高效超超临界双炉膛循环流化床锅炉的设计开发[J]. 动力工程学报, 2018, 38(5): 341-346 ZHANG Man, CAI Runxia, JIANG Xiaoguo, et al. Design and development of a 660 MW high efficiency ultra-supercritical double-furnace CFB boiler[J]. Journal of Chinese Society of Power Engineering, 2018, 38(5): 341-346 [5] 孙献斌, 石波, 时正海, 等. 国产330 MW CFB锅炉的调节和变负荷性[J]. 中国电力, 2013, 46(9): 16-20 SUN Xianbin, SHI Bo, SHI Zhenghai, et al. Regulation and load variation performance of the domestic 330-MW CFB boiler[J]. Electric Power, 2013, 46(9): 16-20 [6] 朱昊凌. 大型CFB机组调峰性能优化技术研究[D]. 昆明: 昆明理工大学, 2015. [7] 蒋春雷, 牛瑞雪. 330 MW CFB机组深度调峰操作方法的探究[J]. 沈阳工程学院学报(自然科学版), 2017, 13(4): 326-330 JIANG Chunlei, NIU Ruixue. Research on operation method of deep peak-shaving of 330 MW CFB unit[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2017, 13(4): 326-330 [8] 杨俏发. 循环流化床机组深度调峰试验研究[J]. 山西电力, 2018(6): 51-53 YANG Qiaofa. Experiment study on deep peak regulation of CFB units[J]. Shanxi Electric Power, 2018(6): 51-53 [9] 于浩洋, 高明明, 张缦, 等. 循环流化床机组深度调峰性能分析与评价[J]. 热力发电, 2020, 49(5): 65-72 YU Haoyang, GAO Mingming, ZHANG Man, et al. Performance analysis and evaluation of deep peak-regulating for circulating fluidized bed units[J]. Thermal Power Generation, 2020, 49(5): 65-72 [10] 刘吉臻, 洪烽, 高明明, 等. 循环流化床机组快速变负荷运行控制策略研究[J]. 中国电机工程学报, 2017, 37(14): 4130-4137, S20 LIU Jizhen, HONG Feng, GAO Mingming, et al. Research on the control strategy for quick load change of circulating fluidized bed boiler units[J]. Proceedings of the CSEE, 2017, 37(14): 4130-4137, S20 [11] 蔡晋, 单露, 王志宁, 等. 超临界350 MW循环流化床锅炉变负荷特性[J]. 热力发电, 2020, 49(9): 98-103, 108 CAI Jin, SHAN Lu, WANG Zhining, et al. Variable load characteristics of a 350 MW supercritical circulating fluidized bed boiler[J]. Thermal Power Generation, 2020, 49(9): 98-103, 108 [12] 张冲冲, 马素霞, 张建春, 等. 350 MW循环流化床锅炉变负荷过程中污染物排放研究[J]. 热力发电, 2020, 49(1): 41-47 ZHANG Chongchong, MA Suxia, ZHANG Jianchun, et al. Pollutant emission from 350 MW CFB boiler under varying load condition[J]. Thermal Power Generation, 2020, 49(1): 41-47 [13] 张冲冲. 循环流化床锅炉变负荷过程中污染物排放动态特性研究[D]. 太原: 太原理工大学, 2019. ZHANG Chongchong. Study on dynamic characteristics of pollutant emission from CFB boiler under variable load[D]. Taiyuan: Taiyuan University of Technology, 2019. [14] 于瑞红, 王涛涛. 350 MW超临界CFB机组深度调峰经济性分析[J]. 煤炭科技, 2020, 41(5): 12-13, 27 YU Ruihong, WANG Taotao. Economic analysis of deep peak load regulation of 350 MW supercritical CFB Unit[J]. Coal Science & Technology Magazine, 2020, 41(5): 12-13, 27 [15] 李竞岌, 杨海瑞, 吕俊复, 等. 节能型循环流化床锅炉低氮氧化物排放的分析[J]. 燃烧科学与技术, 2013, 19(4): 293-298 LI Jingji, YANG Hairui, LU Junfu, et al. Low NOx emission characteristic of low energy consumption CFB boilers[J]. Journal of Combustion Science and Technology, 2013, 19(4): 293-298 [16] ZHENG W J, ZHANG M, ZHANG Y, et al. The effect of the secondary air injection on the gas-solid flow characteristics in the circulating fluidized bed[J]. Chemical Engineering Research and Design, 2019, 141: 220-228. [17] 蔡润夏, 柯希玮, 葛荣存, 等. 循环流化床超细石灰石炉内脱硫研究[J]. 中国电机工程学报, 2018, 38(10): 3042-3048, S23 CAI Runxia, KE Xiwei, GE Rongcun, et al. The in-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers[J]. Proceedings of the CSEE, 2018, 38(10): 3042-3048, S23 |