[1] 刘素蔚, 赵晓丽, 闫风光. 风电优先调度对电力系统能源强度及经济成本的影响[J]. 中国电力, 2016, 49(9):130-136 LIU Suwei, ZHAO Xiaoli, YAN Fengguang. The effect of priority dispatch of wind power on the energy intensity and economic cost of electric power system[J]. Electric Power, 2016, 49(9):130-136 [2] 董福贵, 吴南南, 么峻, 等. 大规模风电并网背景下火电调峰行为演化博弈模型[J]. 中国电力, 2018, 51(9):151-157 DONG Fugui, WU Nannan, YAO Jun, et al. Study on evolutionary game model of thermal power regulation in largescale wind power grid integration[J]. Electric Power, 2018, 51(9):151-157 [3] 李虹, 刘瑞叶, 高挺. 考虑风电消纳的电动汽车有序充电策略研究[J]. 电力科学与技术学报, 2017, 32(1):16-22 LI Hong, LIU Ruiye, GAO Ting. Research on coordinated charging strategy of electric vehicles considering wind power accommodation[J]. Journal of Electric Power Science and Technology, 2017, 32(1):16-22 [4] ANDERSEN T V. Integration of 50% wind power in a CHP based power system:a model-based analysis of the impacts of increasing wind power and the potentials of flexible power generation[D]. Copenhagen Technical University of Denmark, 2009 [5] 郑权国, 陈彦秀, 周任军, 等. 调峰补偿热电机组及风电消纳能力的优化模型[J]. 电力系统及其自动化学报, 2018, 30(1):51-57 ZHENG Quanguo, CHEN Yanxiu, ZHOU Renjun, et al. Optimization model for CHP unit with peak load compensation and wind power accommodation capacity[J]. Proceedings of the CSU-EPSA, 2018, 30(1):51-57 [6] 张文韬, 王秀丽, 李言. 大规模风电并网下多区域互联系统热电综合调度模型[J]. 电网技术, 2018, 42(1):154-161 ZHANG Wentao, WANG Xiuli, LI Yan, et al. An analysis model of multi-area interconnected power systems with large-scale wind power involved in comprehensive heating and power system scheduling[J]. Power System Technology, 2018, 42(1):154-161 [7] 许彦平, 王跃峰, 唐林, 等. 弃风供暖模式下风电接纳能力评估及效益分析[J]. 中国电力, 2017, 50(2):139-143, 149 XU Yanping, WANG Yuefeng, TANG Lin, et al. Small signal stability optimal designing of direct-driven permanent magnet wind power system based on sensitivity analysis method[J]. Electric Power, 2017, 50(2):139-143, 149 [8] NUYTTEN T, CLAESSENS B, PAREDISK, et al. Flexibility of a combined heat and power system with thermal energy storage for district heating[J]. Applied Energy, 2013, 104(4):583-591. [9] CHEN X, KANG C, O'MALLEY M, et al. Increasing the flexibility of combined heat and power for wind power integration in China:modeling and implications[J]. IEEE Transactions on Power Systems, 2015, 30(4):1848-1857. [10] 于婧, 孙宏斌, 沈欣炜. 考虑储热装置的风电-热电机组联合优化运行策略[J]. 电力自动化设备, 2017, 37(6):139-145 YU Jing, SUN Hongbin, SHEN Xinwei. Joint operation optimization strategy for wind power-thermal power unit considering thermal storage device[J]. Electric Power Automation Equipment, 2017, 37(6):139-145 [11] 吕泉, 李玲, 朱全胜, 等. 三种弃风消纳方案的节煤效果与国民经济性比较[J]. 电力系统自动化, 2015, 39(7):75-83 LU Quan, LI Ling, ZHU Quansheng, et al. Comparison of the effect of saving coal and the national economy of the three abandoned wind-removing schemes[J]. Automation of Electric Power Systems, 2015, 39(7):75-83 [12] 王振浩, 杨璐, 田春光, 等. 考虑风电消纳的风电-电储能-蓄热式电锅炉联合系统能量优化[J]. 中国电机工程报, 2017, 37(增刊1):137-143. WANG Zhenhao, YANG Lu, TIAN Chunguang, et al. Energy optimization for combined system of wind-electric energy storage-regenerative electric boiler considering wind consumption[J]. Automation of Electric Power Systems, 2017, 37(S1):137-143. [13] 陈磊, 徐飞, 王晓, 等. 储热提升风电消纳能力的实施方式及效果分析[J]. 中国电机工程学报, 2015, 35(17):4283-4290 CHEN Lei, XU Fei, WANG Xiao, et al. Implementation and effect of thermal storage in improving wind power accommodation[J]. Proceedings of the CSEE, 2015, 35(17):4283-4290 [14] 施泉生, 李士动, 张涛. 考虑碳排放成本的备用市场竞价模型[J]. 电力系统保护与控制, 2014, 42(16):40-45 SHI Quansheng, LI Shidong, ZHANG Tao. A reserve market bidding model considering carbon emission costs[J]. Power System Protection and Control, 2014, 42(16):40-45 [15] 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2014, 42(16):40-45 LU Zhigang, SUI Yushan, FENG Tao, et al. Wind power accommodation low-carbon economic dispatch considering heat accumulator and carbon capture devices[J]. Transactions of China Electrotechnical Society, 2014, 42(16):40-45 [16] 王冠, 李鹏, 焦扬, 等. 计及风光不确定性的虚拟电厂多目标随机调度优化模型[J]. 中国电力, 2017, 50(5):107-113 WANG Guan, LI Peng, JIAO Yang, et al. Multi-objective stochastic scheduling optimization model for virtual power plant considering wind-light uncertainty[J]. Electric Power, 2017, 50(5):107-113 [17] 周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电-碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(6):1675-1683, 1904 ZHOU Renjun, SUN Hong, TANG Xiafei, et al. Low-carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constraint[J]. Proceedings of the CSEE, 2018, 38(6):1675-1683, 1904 [18] ROY P K, PAUL C, SULTANA S. Oppositional teaching learning based optimization approach for combined heat and power dispatch[J]. International Journal of Electrical Power & Energy Systems, 2014, 57(5):392-403. [19] THOMAS N, PETER N. A new method for an economic assessment of heat and power plants using dimensionless numbers[J]. Biomass and Bioenergy, 2000, 18(3):181-188. [20] AGENCY D E. Technology data for energy plants[M]. Denmark:Energinet.dk, 2010. |