中国电力 ›› 2019, Vol. 52 ›› Issue (11): 107-117.DOI: 10.11930/j.issn.1004-9649.201905042

• 电网 • 上一篇    下一篇

基于Non-MPPT算法的区域光伏消纳控制策略

牛耕1, 寇凌峰1, 侯小刚1, 屈小云1, 谢辉2, 高博2   

  1. 1. 中国电力科学研究院有限公司, 北京 100192;
    2. 国网安徽省电力有限公司电力科学研究院, 安徽 合肥 230601
  • 收稿日期:2019-05-08 修回日期:2019-07-08 出版日期:2019-11-05 发布日期:2019-11-05
  • 通讯作者: 寇凌峰(1985-),男,通信作者,硕士,高级工程师,从事分布式发电和能源互联网关键技术研究,E-mail:koulingfeng@epri.sgcc.com.cn
  • 作者简介:牛耕(1990-),男,博士,工程师,从事配电网运行与控制、分布式发电与微电网、储能与能源互联网关键技术研究,E-mail:niugeng@epri.sgu.com.cn
  • 基金资助:
    国家电网公司科技项目(提高光伏扶贫地区电网消纳能力与保障技术研究与应用,PD71-17-014)。

Regional Photovoltaic Consumption Control Strategy Based on Non-MPPT Algorithm

NIU Geng1, KOU Lingfeng1, HOU Xiaogang1, QU Xiaoyun1, XIE Hui2, GAO Bo2   

  1. 1. China Electric Power Research Institute, Beijing 100192, China;
    2. Electric Power Research Institute of State Grid Anhui Electric Power Company, Hefei 230601, China
  • Received:2019-05-08 Revised:2019-07-08 Online:2019-11-05 Published:2019-11-05
  • Supported by:
    This work is supported by State Grid Corporation Science and Technology Project (Research and Application of Enhancing Power Grid Absorption Ability and Guarantee Technology in Poverty Alleviation Area by Photovoltaic Technology, No.PD71-17-014).

摘要: 基于两级式光伏发电系统环境自适应算法以及光伏阵列分布式结构,提出一种适用于区域光伏消纳控制的Non-MPPT(maximum power point tracking)算法,力主解决光伏发电系统出力过剩问题。该算法基于光伏模块分布式前级优化器,实现不同环境下光伏模块分散控制,并通过光伏模块输出电压、电流随机变量,导出光伏电池环境修正参数,进而实时修正区域光伏模块最大功率电压,使其最大功率电压实时跟随外部环境变化,并结合电导增量法,实现不同环境下光伏阵列全局最大功率跟踪。而后,若区域性电网光伏发电系统出力过剩,则将区域光伏按其实际出力情况进行分区管理,以区域电网对其出力分配额度为控制目标,推导出光伏阵列对应输出电压,并将其引入至光伏发电系统前级Boost电路,通过修正Boost电路占空比,使光伏发电系统输出功率快速跟随主网需求指令,解决了区域内光伏过剩出力的消纳问题。最后,通过Matlab/Simulink仿真软件搭建两级式三相光伏并网系统,验证该算法在电力系统应用中的有效性。

关键词: 光伏发电, 新能源消纳, 环境自适应算法, Non-MPPT算法, 分区管理

Abstract: This paper proposes a Non-MPPT algorithm suitable for regional rooftop photovoltaic power generation system to solve the problem of excess capacity of PV power generation system, based on the environmental adaptive algorithm of two-stage photovoltaic power generation system and the distributed structure of photovoltaic array. In the normal conditions, the shading PV module can realize the decentralized control based on the distributed pre-optimizer of PV module. And through the PV module output voltage and current random variables, the PV battery environmental correction parameters are derived, and the maximum power voltage of the regional PV module is corrected in real time, so that the maximum power voltage follows the external environment changes in real time, and combined with the conductance increment method to achieve PV array global maximum power tracking in different environments. If the output of photovoltaic power supply of the power grid is excessive, the regional roof PV will be managed according to its actual power output. Through the power distribution amount of the regional power grid, the output voltage of the rooftop PV array can be derived. And the derived voltage will be introduced into the front stage Boost circuit of the photovoltaic power generation system. Then, by modifying the duty ratio of the boost circuit, the output power of the photovoltaic power generation system can quickly follow the demand instruction of the main network, so as to realize the consumption of excess output of rooftop PV in the region. Finally, a two-stage three-phase photovoltaic grid-connected system is built by Matlab/Simulation to verify the effectiveness of the algorithm in the applications of power system.

Key words: PV power generation, environmental adaptive algorithm, Non-MPPT algorithm, regionalized management, regionalized management

中图分类号: