[1] PATEL R D, PATEL I J, et al. A review paper on erosion and corrosion behavior of coal combustion chamber[J]. Int. J. Innov. Res. Sci. Technol, 2014, 1(7):72-76.
[2] BEEK M C V, RINDT C C M, WIJERS J G, et al. Rebound characteristics for 50-μm particles impacting a powdery deposit[J]. Powder Technology, 2006, 165(2):53-64.
[3] ROGERS L N, REED J. The adhesion of particles undergoing an elastic-plastic impact with a surface[J]. Journal of Physics D:Applied Physics, 1984, 17(4):677.
[4] THORNTON C, NING Z. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres[J]. Powder Technology, 1998, 99(2):154-162.
[5] KONSTANDOPOULOS A G. Particle sticking/rebound criteria at oblique impact[J]. Journal of Aerosol Science, 2006, 37(3):292-305.
[6] PAZ C, SUÁREZ E, EIRÍS A, et al. Development of a predictive CFD fouling model for diesel engine exhaust gas systems[J]. Heat Transfer Engineering, 2013, 34(8-9):674-682.
[7] HAN H, HE Y L, TAO W Q, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. International Journal of Heat and Mass Transfer, 2014, 72:210-221.
[8] HE Y L, TANG S Z, WANG F L, et al. Gas-side fouling, erosion and corrosion of heat exchanger for middle and low temperature flue gas waste heat recovery[J]. Chinese Science Bulletin, 2016, 61(17):1858-1876.
[9] LEE B E, FLETCHER C A J, BEHNIA M. Computational study of solid particle erosion for a single tube in cross flow[J]. Wear, 2000, 240(1):95-99.
[10] FAN J, SUN P, ZHENG Y, et al. A numerical study of a protection technique against tube erosion[J]. Wear, 1999, 225/229(4):458-464.
[11] JIN Y, DAN D, TANG G H, et al. Numerical study of the solid particle erosion on a single row tube surface[C]//The 4th Asian Symposium on Computational Heat Tranfer and Fluid Flow. Hong Kong, 2013.
[12] JIN Y, TANG G H, HE Y L, et al. Numerical study of the solid particle erosion on H-Type finned circular/elliptic tube surface[J]. Communications in Computational Physics, 2017, 21(2):466-489.
[13] ZHAO X B, TANG G H, MA X W, et al. Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples[J]. Applied Energy, 2014, 127:93-104.
[14] TIAN L, HE Y, TAO Y, et al. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements[J]. International Journal of Thermal Sciences, 2009, 48(9):1765-1776.
[15] Fluent Inc. Fluent user's guide[Z]. USA:Fluent Inc, 2005.
[16] 赵虹, 周霭琳, 施浩勋, 等. 不同扩展换热面传热、积灰、磨损特性对比[J]. 热力发电, 2015, 44(4):33-38.ZHAO Hong, ZHOU Ailin, SHI Haoxun, et al. Comparison on heat transfer, fouling and wear characteristics of different extended heat transfer surfaces[J]. Thermal Power Generation, 2015, 44(4):33-38.
[17] 袁晓豆, 史月涛. 气固两相流绕流H型翅片管流动及积灰特性的数值模拟[J]. 山东大学学报(工学版), 2012(2):112-117.YUAN Xiaodou, SHI Yuetao. Numerical simulation of flow and fouling characteristics of gas-solid two-phase flow swept H-finned tube[J]. Journal of Shandong University (Engineering Science), 2012, (2):112-117.
[18] 马重芳. 强化传热[M]. 北京:科学出版社, 1990.
[19] 陈衡, 王云刚, 赵钦新, 等. 燃煤锅炉低温受热面积灰特性实验研究[J]. 中国电机工程学报, 2015, 35(S1):118-124.CHEN Heng, WANG Yungang, ZHAO Qinxing, et al. Experimental study on the flouring characteristics of low temperature heating area of coal-fired boiler[J]. Proceeding of the CSEE, 2015, 35(S1):118-124. |