[1] RAUDASKOSKI R, TURPEINEN E. Catalytic activation of CO 2 : use of secondary CO 2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts[J]. Catalysis Today, 2009, 144(3-4): 318-323. [2] KIM J S, LEE S, LEE S B, et al . Performance of catalytic reactors for the hydrogenation of CO 2 to hydrocarbons[J]. Catalysis Today, 2006, 115(1-4): 228-234. [3] GATTRELL M, GUPTA N, CO A. Electrochemical reduction of CO 2 to hydrocarbons to store renewable electrical energy and upgrade biogas [J]. Energy Conversion and Management, 2007, 48(4): 1255-1265. [4] DOHERTY M D, GRILLS D C, MVCKERMAN J T, et al . Toward more efficient photochemical CO 2 reduction: use of CO 2 or photogenerated hydrides [J]. Coordination Chemistry Reviews, 2010, 254(21-22): 2472-2482. [5] KOCI K, OBALOVA L, MATEJOVA L, et al . Effect of TiO 2 particle size on the photocatalytic reduction of CO 2 [J]. Applied Catalysis B: Environmental, 2009, 89(3-4): 494-502. [6] MONTEMAGNO C, WENDELL D, CHOI H. Bubble architectures and methods of making and using thereof: U.S.A, 084540[P]. 2011-07-14. [7] TAKAHASHI H, LIU L H, YASHIRO Y, et al . CO 2 reduction using hydrothermal method for the selective formation of organic compounds[J]. Journal of Materials Science, 2006,41(5): 1585-1589. [8] YASHIRO Y, KORI T, HIRANO N, et al . Organic compound synthesis from CO 2 by hydrothermal reduction[C]//5th International Conference on Solvo-Thermal Reaction, Department of Ceramic and Materials Engineering Rutgars, the State University of New Jersey, 2002. [9] 崔俊儒,辛嘉英,牛建中,等. 甲烷氧化细菌催化二氧化碳生物合成甲醇的研究[J]. 分子催化,2004,18(3):214-218. CUI Jun-ru, XIN Jia-ying, NIU Jian-zhong, et al . Biosynthesis of methanol from carbon dioxide by methanotrophic bacteria[J]. Journal of Molecular Catalysis, 2004, 18(3): 214-218. [10] ZHANG Y L, SUN Q, DENG J F, et al . A High activity Cu/ZnO/A1 2 O 3 catalyst for methanol synthesis: preparation and catalytic properties [J]. Applied Catalysis A: General, 1997, 158(1-2):105- 120. [11] KLIER K. Methanol synthesis[J]. Advances in Catalysis, 1982, 31: 243-313. [12] BURCH R, CHAPPELL R J. Support and additive effects in the synthesis of methanol over copper catalysts [J]. Applied Catalysts, 1988, 45(1): 131-150. [13] CHINCHEN G C, DENNY P J, PARKER D G, et al . Mechanism of methanol synthesis from CO 2 /CO/H 2 mixtures over copper/Zinc oxide/Alumina catalysts: use of 14C-labelled reactants[J]. Applied Catalysts, 1987, 30(2): 333-338. [14] AN X, ZUO Y Z, ZHANG Q, et al . Methanol synthesis from CO hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88-94. [15] XU Q, HE D H, FUJIWARA M, et al . Hydrogenation of carbon dioxide over Fe-Cu-Na/zeolite composite catalysts: Na migration via solid-solid reaction and its effects on the catalytic activity[J]. Journal of Molecular Catalysis A: Chemical, 1998,136(2): 161-168. [16] VASKA L, SCHREINER S, FELTY R A, et al . Catalytic reduction of carbon dioxide to methane and other species via formamide intermediation: synthesis and hydrogenation of HC(O)NH 2 in the presence of [Ir(Cl)(CO)(Ph 3 P) 2 ][J]. Journal of Molecular Catalysis, 1989, 52(2): 11-16. [17] TANAKA R, YAMASHITA M, NOZAKI K. Catalytic hydrogenation of carbon dioxide using Ir(III) pincer complexes [J]. Journal of the American Chemical Society, 2009, 131(40): 14168-14269. [18] NAGATA H, YAMADA K, KISHIDA M, et al . Catalytic hydrogenation of carbon dioxide into C +2 alcohols with Ir-Mo/SiO 2 [J]. Energy Conversion and Management, 1995, 36(6-9): 657-660. [19] BANDO K K, ARAKAWA H, ICHIKUNI N. CO 2 hydrogenation over micro- and mesoporous oxides supported Ru catalysts[J]. Catalysis Letters, 1999, 60(3): 125-132. [20] KATHó á, OPRE Z, LAURENCZY G, et al . Water-soluble analogs of RuCl 3 (NO)(PPh 3 ) 2 and their catalytic activity in the hydrogenation of carbon dioxide and bicarbonate in aqueous solution[J]. Journal of Molecular Catalysis A: Chemical, 2003 (204-205): 143-148. [21] ZHANG Y P, FEI J H, YU Y M, et al . The preparation and catalytic performance of novel amine-modified silica supported ruthenium complexes for supercritical carbon dioxide hydrogenation to formic acid [J]. Catalysis Letters, 2004, 93(3-4): 231-234. [22] KAYAKI Y, SHIMOKAWATOKO Y, IKARIYA T. Synthesis of ruthenium(II) complexes containing hydroxymethyl-phosphines and their catalytic activities for hydrogenation of supercritical carbon dioxide [J]. Inorganic Chemistry, 2007, 46(14): 5791-5797. [23] THAI T T, THERRIEN B, SüSS-FINK G. Arene ruthenium oxinato complexes: synthesis, molecular structure and catalytic activity for the hydrogenation of carbon dioxide in aqueous solution[J]. Journal of Organometallic Chemistry, 2009(25): 3973- 3981. [24] CHASHECHNIKOVA I T, PYATNITSKII Y I, STRNZHKO V L, et al . Effect of doping with small amounts of nickel on the catalytic properties of zirconium dioxide in the hydrogenation of carbon monoxide[J]. Theoretical and Experimental Chemistry, 1996, 32(6): 309-312. [25] ANDO H, FUJIWARA M, MATSUMURA Y, et al . Catalytic hydrogenation of carbon dioxide over LaNi 5 activated during the reaction[J]. Journal of Molecular Catalysis A: Chemical, 1999, 144(1): 117-122. [26] VESSELLI E, ROGATIS L D, DING X L, et al . Carbon dioxide hydrogenation on Ni(110)[J]. Journal of the American Chemical Society, 2008, 130(34): 11417-11422. [27] COLLINS S E, CHIAVASSA D L, BONIVARDI A L, et al . Hydrogen spillover in Ga 2 O 3 -Pd/SiO 2 catalysts for methanol synthesis [J]. Catalysis Letters, 2005, 103(1-2): 83-88. [28] NI X M, TAN Y S, HAN Y Z, et al . Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation [J]. Catalysis Communications, 2007, 8(11): 1711-1714. |