[1] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1):149-1596 LIU Jizhen, MA Lifei, WANG Qinghua, et al. Offshore wind power supports China's energy transition[J]. Strategic Study of CAE, 2021, 23(1):149-1596 [2] 王鑫, 王海云, 王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表, 2020, 57(22):55-62 WANG Xin, WANG Haiyun, WANG Weiqing. Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement & Instrumentation, 2020, 57(22):55-62 [3] 刘超, 徐跃. 漂浮式海上风电在我国的发展前景分析[J]. 中外能源, 2020, 25(2):16-21 LIU Chao, XU Yue. Analysis on development prospect of floating offshore wind power in China[J]. Sino-global Energy, 2020, 25(2):16-21 [4] 姜楠. 深海风力发电技术的发展现状与前景分析[J]. 新能源进展, 2015, 3(1):21-24 JIANG Nan. Analysis on status and prospect of wind power generation in deep sea[J]. Advances in New and Renewable Enengy, 2015, 3(1):21-24 [5] 唐征歧, 周彬, 王凯. 海上风电发展及其技术研究概述[J]. 太阳能, 2018(6):11-16, 48 TANG Zhengqi, ZHOU Bin, WANG Kai. Overview of offshore wind power development and technological research[J]. Solar Energy, 2018(6):11-16, 48 [6] 李子林, 施岐璘. 浅谈深远海域风电发展前景[J]. 太阳能, 2018(6):31-34, 60 LI Zilin, SHI Qilin. Brief introduction about the prospect of wind power development in deep waters[J]. Solar Energy, 2018(6):31-34, 60 [7] 苏峰. 浅谈海上深水风电难点及方向[J]. 电力系统装备, 2020(6):148-149 SU Feng. Talking about the difficulties and directions of offshore deep-water wind power[J]. Electric Power System Equipment, 2020(6):148-149 [8] 傅春翔, 汪天呈, 郦洪柯, 等. 用于海上风电并网的柔性直流系统接地方式研究[J]. 电力系统保护与控制, 2019, 47(20):119-126 FU Chunxiang, WANG Tiancheng, LI Hongke, et al. Study on grounding methods of VSC-HVDC for off-shore wind farm integration[J]. Power System Protection and Control, 2019, 47(20):119-126 [9] 曹善军, 王金雷, 吴小钊, 等. 海上风电送出技术研究浅述[J]. 电工电气, 2020(9):66-69 CAO Shanjun, WANG Jinlei, WU Xiaozhao, et al. Research on offshore wind power delivery technology[J]. Electrotechnics Electric, 2020(9):66-69 [10] 闫培丽, 袁兆祥, 齐立忠, 等. 海上风电场二次系统设计关键技术[J]. 电力建设, 2015, 36(4):129-133 YAN Peili, YUAN Zhaoxiang, QI Lizhong, et al. Key technology of offshore wind farm secondary system design[J]. Electric Power Construction, 2015, 36(4):129-133 [11] 卢智雪, 刘天琪, 丁媛媛. 海上风电场故障特性及保护配合的研究[J]. 电力系统保护与控制, 2018, 46(10):144-151 LU Zhixue, LIU Tianqi, DING Yuanyuan. Study on fault characteristics and protection cooperation of the offshore wind farm[J]. Power System Protection and Control, 2018, 46(10):144-151 [12] 杨源, 程劲松, 汪少勇, 等. 一种海上风电继电保护配置优化方案研究[J]. 南方能源建设, 2019, 6(1):36-41 YANG Yuan, CHENG Jinsong, WANG Shaoyong, et al. Research on one optimization relay protection scheme of offshore wind farm[J]. Southern Energy Construction, 2019, 6(1):36-41 [13] 吴心弘, 张武军, 何奔腾. T接线路差动保护中电容电流补偿方法研究[J]. 继电器, 2007(18):6-11 WU Xinhong, ZHANG Wujun, HE Benteng. Study on current compensation method of differential protection for teed lines[J]. Relay, 2007(18):6-11 [14] 蒋小平, 张红菊, 马速良, 等. 特高压带高压并联电抗器线路的行波差动保护研究[J]. 高压电器, 2016, 52(2):121-127 JIANG Xiaoping, ZHANG Hongju, MA Suliang, et al. Study on traveling-wave differential protection on UHV transmission line with high voltage shunt reactor[J]. High Voltage Apparatus, 2016, 52(2):121-127 [15] 辛振涛. 超高压并联电抗器及线路保护综合研究[D]. 武汉:华中科技大学, 2005. XIN Zhentao. Compositive study on protection of extra high voltage shunt reactor and transmission line[D].Wuhan:Huazhong University of Science and Technology,2005. [16] 刘革明, 杨琰, 吴殿峰, 等. 变压器式可控高抗对线路差动保护的影响及对策研究[J]. 电力系统保护与控制, 2015, 43(16):133-138 LIU Geming, YANG Yan, WU Dianfeng, et al. A study of effect of controllable shunt reactor of transformer type on line differential protection and countermeasures[J]. Power System Protection and Control, 2015, 43(16):133-138 [17] 吴通华, 郑玉平, 朱晓彤. 基于暂态电容电流补偿的线路差动保护[J]. 电力系统自动化, 2005(12):61-67 WU Tonghua, ZHENG Yuping, ZHU Xiaotong. Current differential protection based on transient capacitance current compensation[J]. Automation of Electric Power Systems, 2005(12):61-67 [18] 丁蕾, 房鑫炎. 基于电容电流半补偿的高压电力电缆分相电流差动保护研究[J]. 电网技术, 2005(4):45-49 DING Lei, FANG Xinyan. Research on capacitance current compensation based differential current protection for high voltage power cable[J]. Power System Technology, 2005(4):45-49 [19] 索南加乐, 张怿宁, 齐军, 等. Π模型时域电容电流补偿的电流差动保护研究[J]. 中国电机工程学报, 2006(5):12-18 SUONAN Jiale, ZHANG Yining, QI Jun, et al. Study of current differential protection using time-domain capacitive current compensating algorithm on Ⅱ-model[J]. Proceedings of the CSEE, 2006(5):12-18 [20] DABBABI A, BOURGUET S, LOISEL R, et al. Optimization of offshore wind farms with HVAC and HVDC transmission networks[M]//ELECTRIMACS 2019. Springer, Cham, 2020:111-124. [21] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14):3758-3771 CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14):3758-3771 [22] 曲名新, 康慨, 邓少平, 等. 基于海上风电场无功补偿的长距离高压海底电缆截面选择研究[J]. 自动化应用, 2019(10):44-46, 51 QU Mingxin, KANG Kai, DENG Shaoping, et al. Research on selection of long-distance high-voltage submarine cable section based on reactive power compensation of offshore wind farm[J]. Automation Application, 2019(10):44-46, 51 [23] 张怿宁, 方苏, 国建宝. 架空-海缆混合高压输电线路自适应重合闸方案的研究[J]. 电力系统保护与控制, 2020, 48(16):115-121 ZHANG Yining, FANG Su, GUO Jianbao. Research on adaptive reclosing scheme for overhead-submarine hybrid high-voltage transmission line[J]. Power System Protection and Control, 2020, 48(16):115-121 [24] 李金珏, 穆科磊, 曹艳艳, 等. 输电线路纵差保护动作的影响因素及补救措施[J]. 华北水利水电大学学报(自然科学版), 2014, 35(3):78-81 LI Jinyu, MU Kelei, CAO Yanyan, et al. Influence factors and remedial measures of transmission line differential protection action[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2014, 35(3):78-81 [25] 王宝松. 探析220 kV变电站及线路继电保护设计和整定计算[J]. 中国新通信, 2020, 22(16):144 WANG Baosong. Analysis of 220 kV substation and line relay protection design and rectification calculation[J]. China New Telecommunications, 2020, 22(16):144
|