[1] 中国储能网新闻中心. 全球大型风光发电基地开发潜力和前景[N]. 国家电网报, 2018-12-04. [2] 蒋东方, 贾跃龙, 鲁强, 等. 氢能在综合能源系统中的应用前景[J]. 中国电力, 2020, 53(5): 135–142 JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135–142 [3] TAIEB A, SHAABAN M. Cost analysis of electricity transmission from offshore wind farm by HVDC and hydrogen pipeline systems[C]//2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). Bangkok, Thailand. IEEE, 2019: 632-636. [4] MCDONAGH S, O'SHEA R, WALL D M, et al. Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel[J]. Applied Energy, 2018, 215: 444–456. [5] MAIENZA C, AVOSSA A M, RICCIARDELLI F, et al. A life cycle cost model for floating offshore wind farms[J]. Applied Energy, 2020, 266: 114716. [6] MCDONAGH S, AHMED S, DESMOND C, et al. Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment[J]. Applied Energy, 2020, 265: 114732. [7] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459–5466 WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459–5466 [8] 牛东晓, 赵东来, 杨尚东, 等. 基于改进粒子群算法的海上风电汇集方式与并网优化研究[J]. 中南大学学报(自然科学版), 2019, 50(12): 3146–3155 NIU Dongxiao, ZHAO Donglai, YANG Shangdong, et al. Research on convergence mode and grid-connected optimization of offshore wind power based on improved particle swarm optimization algorithm[J]. Journal of Central South University(Science and Technology), 2019, 50(12): 3146–3155 [9] 王鑫, 王海云, 王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表, 2020, 57(22): 55–62 WANG Xin, WANG Haiyun, WANG Weiqing. Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement & Instrumentation, 2020, 57(22): 55–62 [10] SHAFIEE M, BRENNAN F, ESPINOSA I A. A parametric whole life cost model for offshore wind farms[J]. The International Journal of Life Cycle Assessment, 2016, 21(7): 961–975. [11] BLANCO M I. The economics of wind energy[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1372–1382. [12] 周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117–126 ZHOU Chao, WANG Hui, OUYANG Liuzhang, et al. The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials Reports, 2019, 33(1): 117–126 [13] IOANNOU A, BRENNAN F. A preliminary techno-economic comparison between a grid-connected and non-grid connected offshore floating wind farm[C]//2019 Offshore Energy and Storage Summit (OSES). BREST, France. IEEE, 2019: 1-6. [14] DINH V N, LEAHY P, MCKEOGH E, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24620–24631. [15] ITO H, MAEDA T, NAKANO A, et al. Properties of Nafion membranes under PEM water electrolysis conditions[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10527–10540. [16] DE LAMY C, MILLET P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions[J]. Journal of Power Sources, 2020, 447: 227350. [17] CHANDESRIS M, MÉDEAU V, GUILLET N, et al. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1353–1366. [18] ABDIN Z, WEBB C J, GRAY E M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13243–13257. [19] MYHR A, BJERKSETER C, ÅGOTNES A, et al. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective[J]. Renewable Energy, 2014, 66: 714–728.
|