[1] FANT C, ADAM SCHLOSSER C, STRZEPEK K. The impact of climate change on wind and solar resources in southern Africa[J]. Applied Energy, 2016, 161: 556–564. [2] DING Z Y, HOU H J, YU G, et al. Performance analysis of a wind-solar hybrid power generation system[J]. Energy Conversion and Management, 2019, 181(2): 223–234. [3] 蒋东方, 贾跃龙, 鲁强, 等. 氢能在综合能源系统中的应用前景[J]. 中国电力, 2020, 53(5): 135–142 JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135–142 [4] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1–11 [5] REN J Z, GAO S Z, TAN S Y, et al. Hydrogen economy in China: strengths–weaknesses–opportunities–threats analysis and strategies prioritization[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1230–1243. [6] 李健强, 余光正, 汤波, 等. 考虑风光利用率和含氢能流的多能流综合能源系统规划[J]. 电力系统保护与控制, 2021, 49(14): 11–20 LI Jianqiang, YU Guangzheng, TANG Bo, et al. Multi-energy flow integrated energy system planning considering wind and solar utilization and containing hydrogen energy flow[J]. Power System Protection and Control, 2021, 49(14): 11–20 [7] CHEN H H, KANG H Y, LEE A H I. Strategic selection of suitable projects for hybrid solar-wind power generation systems[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 413–421. [8] MILLIGAN M, FREW B, KIRBY B, et al. Alternatives no more: wind and solar power are mainstays of a clean, reliable, affordable grid[J]. IEEE Power and Energy Magazine, 2015, 13(6): 78–87. [9] HOSSEINALIZADEH R, SHAKOURI G H, AMALNICK M S, et al. Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 139–150. [10] BHATTACHARJEE S, ACHARYA S. PV–wind hybrid power option for a low wind topography[J]. Energy Conversion and Management, 2015, 89: 942–954. [11] 徐靖, 赵霞, 罗映红. 氢燃料电池并入微电网的改进虚拟同步机控制[J]. 电力系统保护与控制, 2020, 48(22): 165–172 XU Jing, ZHAO Xia, LUO Yinghong. Improved virtual synchronous generator control for hydrogen fuel cell integration into a microgrid[J]. Power System Protection and Control, 2020, 48(22): 165–172 [12] AL BUSAIDI A S, KAZEM H A, AL-BADI A H, et al. A review of optimum sizing of hybrid PV–wind renewable energy systems in Oman[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 185–193. [13] HONG Y Y, LIAN R C. Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using Markov-based genetic algorithm[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 640–647. [14] SANTOS D M F, SEQUEIRA C A C, FIGUEIREDO J L. Hydrogen production by alkaline water electrolysis[J]. Química Nova, 2013, 36(8): 1176–1193. [15] WANG X Y, ZHANG L S, LI G F, et al. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance[J]. Electrochimica Acta, 2015, 158: 253–257. [16] WEI G Q, XU L, HUANG C D, et al. SPE water electrolysis with SPEEK/PES blend membrane[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7778–7783. [17] 卢一菲, 陈冲, 梁立中. 基于电—氢混合储能的风氢耦合系统建模与控制[J]. 智慧电力, 2020, 48(3): 7–14 LU Yifei, CHEN Chong, LIANG Lizhong. Modeling and control of wind-hydrogen coupling system based on electricity-hydrogen hybrid energy storage[J]. Smart Power, 2020, 48(3): 7–14 [18] TENHUMBERG N, BÜKER K. Ecological and economic evaluation of hydrogen production by different water electrolysis technologies[J]. Chemie Ingenieur Technik, 2020, 92(10): 1586–1595. [19] KATO T. Possibility of hydrogen production from renewable energy[J]. Journal of the Japan Institute of Energy, 2015, 94: 7–18. [20] PAKHIRA S, MENDOZA-CORTES J L. The Quantum nature in the interaction of molecular hydrogen with porous materials: implications for practical hydrogen storage[J]. The Journal of Physical Chemistry C, 2020, 124(11): 6454–6460. [21] 郑津洋, 李静媛, 黄强华, 等. 车用高压燃料气瓶技术发展趋势和我国面临的挑战[J]. 压力容器, 2014, 31(2): 43–51 ZHENG Jinyang, LI Jingyuan, HUANG Qianghua, et al. Technology trends of high pressure vehicle fuel tanks and challenges for China[J]. Pressure Vessel Technology, 2014, 31(2): 43–51 [22] ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048–1057. [23] 赵永志, 花争立, 欧可升, 等. 车载低温高压复合储氢技术研究现状与挑战[J]. 太阳能学报, 2013, 34(7): 1300–1306 ZHAO Yongzhi, HUA Zhengli, OU Kesheng, et al. Development and challenges of cryo-compressed hydrogen storage technologies for automotive applications[J]. Acta Energiae Solaris Sinica, 2013, 34(7): 1300–1306 [24] AHLUWALIA R K, HUA T Q, PENG J K, et al. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4171–4184. [25] 郭浩, 杨洪海. 固体储氢材料的研究现状及发展趋势[J]. 化工新型材料, 2016, 44(9): 19–21 GUO Hao, YANG Honghai. Current status and future prospect of research on solid-state hydrogen storage material[J]. New Chemical Materials, 2016, 44(9): 19–21 [26] DODDS P E, STAFFELL I, HAWKES A D, et al. Hydrogen and fuel cell technologies for heating: a review[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2065–2083. [27] 王吉华, 居钰生, 易正根, 等. 燃料电池技术发展及应用现状综述(下)[J]. 现代车用动力, 2018, 3(3): 1–5 WANG Jihua, JU Yusheng, YI Zhenggen, et al. Review on development and application of fuel cell technology (2)[J]. Modern Vehicle Power, 2018, 3(3): 1–5 [28] ZHANG F Z, COOKE P. Hydrogen and fuel cell development in China: a review[J]. European Planning Studies, 2010, 18(7): 1153–1168. [29] HAO H, MU Z X, LIU Z W, et al. Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world[J]. Frontiers in Energy, 2018, 12(3): 466–480. [30] 李海波, 潘志明, 黄耀文. 浅析氢燃料燃气轮机发电的应用前景[J]. 电力设备管理, 2020(8): 94–96 LI Haibo, PAN Zhiming, HUANG Yaowen. Analysis on the application prospect of hydrogen fuel gas turbine power generation[J]. Electric Power Equipment Management, 2020(8): 94–96 [31] 黄乃成, 吴庆礼, 苏来进, 等. 燃气轮机与新能源混合发电的互补性研究[J]. 中外能源, 2020, 25(12): 10–15 HUANG Naicheng, WU Qingli, SU Laijin, et al. Research on complementarity of hybrid power generation of gas turbine and new energy[J]. Sino-Global Energy, 2020, 25(12): 10–15 [32] 蒋康乐. 风光互补联合制氢系统研究及环境效益评价[D]. 邯郸: 河北工程大学, 2018. JIANG Kangle. Research and environmental benefit evaluation of wind-solar hybrid hydrogen production system[D]. Handan: Hebei University of Engineering, 2018. [33] 白树华. 风光氢联合式独立发电系统应用研究[D]. 重庆: 重庆大学, 2007. BAI Shuhua. Application research of the wind solar hydrogen consociation type independent generates system[D]. Chongqing: Chongqing University, 2007. [34] KHALILNEJAD A, RIAHY G H. A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer[J]. Energy Conversion and Management, 2014, 80: 398–406. [35] DURSUN E, ACARKAN B, KILIC O. Modeling of hydrogen production with a stand-alone renewable hybrid power system[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3098–3107. [36] DUFO-LÓPEZ R, BERNAL-AGUSTÍN J L, MENDOZA F. Design and economical analysis of hybrid PV–wind systems connected to the grid for the intermittent production of hydrogen[J]. Energy Policy, 2009, 37(8): 3082–3095. [37] PELLOW M A, EMMOTT C J M, BARNHART C J, et al. Hydrogen or batteries for grid storage? a net energy analysis[J]. Energy & Environmental Science, 2015, 8(7): 1938–1952. [38] BERNAL-AGUSTÍN J L, DUFO-LÓPEZ R. Techno-economical optimization of the production of hydrogen from PV-wind systems connected to the electrical grid[J]. Renewable Energy, 2010, 35(4): 747–758. [39] CHÁVEZ-RAMÍREZ A U, VALLEJO-BECERRA V, CRUZ J C, et al. A hybrid power plant (solar–wind–hydrogen) model based in artificial intelligence for a remote-housing application in Mexico[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2641–2655. [40] FELLAH B, BENYOUCEF B, BELARBI M, et al. Optimal sizing of a hybrid photovoltaic/wind system supplying a desalination unit[J]. Journal of Engineering Science & Technology, 2018, 13(6): 1816–1833. [41] 杨卫华, 蒋康乐, 孙文叶. 不同应用规模下风光互补发电储能系统优化与设计[J]. 节能, 2017, 36(10): 40–43,3 YANG Weihua, JIANG Kangle, SUN Wenye. Optinization and design under different application scale on wind/photovoltaic hydrid generation system[J]. Energy Conservation, 2017, 36(10): 40–43,3 [42] TAFTICHT T, AGBOSSOU K, DOUMBIA M L, et al. An improved maximum power point tracking method for photovoltaic systems[J]. Renewable Energy, 2008, 33(7): 1508–1516. [43] TORREGLOSA J P, GARCÍA P, FERNÁNDEZ L M, et al. Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[J]. Renewable Energy, 2015, 74: 326–336. [44] 陈皓勇, 陈思敏, 陈锦彬, 等. 面向综合能源系统建模与分析的能量网络理论[J]. 南方电网技术, 2020, 14(2): 62–74 CHEN Haoyong, CHEN Simin, CHEN Jinbin, et al. Energy network theory for modeling and analysis of integrated energy systems[J]. Southern Power System Technology, 2020, 14(2): 62–74 [45] 李文磊. 风光互补发电储能制氢系统研究[D]. 邯郸: 河北工程大学, 2019. LI Wenlei. Research on hydrogen production system of wind-solar complementary power generation[D]. Handan: Hebei University of Engineering, 2019. [46] 聂聪颖, 沈小军, 吕洪, 等. 并网型风电场氢超混合储能容量配置及控制策略研究[J]. 智慧电力, 2020, 48(9): 1–8 NIE Congying, SHEN Xiaojun, LYU Hong, et al. Capacity configuration and control strategy of hydrogen super hybrid energy storage in grid connected wind farm[J]. Smart Power, 2020, 48(9): 1–8 [47] 吕振华, 李强, 韩华春, 等. 计及源荷不确定性和多类储能响应的园区IES多目标优化调度模型[J]. 电力科学与技术学报, 2021, 36(2): 40–50 LV Zhenhua, LI Qiang, HAN Huachun, et al. Multi-objective optimal scheduling model for IES in parks considering source and load uncertainties and multiple type of energy storage responses[J]. Journal of Electric Power Science and Technology, 2021, 36(2): 40–50
|