[1] 李翔宇, Gayan Abeynayake, 姚良忠, 等. 欧洲海上风电发展现状及前景[J]. 全球能源互联网, 2019(2): 116-126 LI Xiangyu, ABEYNAYAKE G, YAO Liangzhong, et al. Recent development and prospect of offshore wind power in Europe[J]. Journal of Global Energy Interconnection, 2019(2): 116-126 [2] 蔡旭, 陈根, 周党生, 等. 海上风电变流器研究现状与展望[J]. 全球能源互联网, 2019(2): 102-115 CAI Xu, CHEN Gen, ZHOU Dangsheng, et al. Review and prospect on key technologies for offshore wind power converters[J]. Journal of Global Energy Interconnection, 2019(2): 102-115 [3] ANDERSSON D, PETERSSON A, AGNEHOLM E, et al. Kriegers flak 640 MW off-shore wind power grid connection: a real project case study[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 79-85. [4] LIU W T, WU Y K, LEE C Y, et al. Effect of low-voltage-ride-through technologies on the first Taiwan offshore wind farm planning[J]. IEEE Transactions on Sustainable Energy, 2011, 2(1): 78-86. [5] MAU C N, RUDION K, ORTHS A, et al. Grid connection of offshore wind farm based DFIG with low frequency AC transmission system[C]//2012 IEEE Power and Energy Society General Meeting. 22-26 July 2012, San Diego, CA, USA. IEEE, 2012: 1-7. [6] BRESESTI P, KLING W L, HENDRIKS R L, et al. HVDC connection of offshore wind farms to the transmission system[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 37-43. [7] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466 WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466 [8] MUYEEN S M, TAKAHASHI R, TAMURA J. Operation and control of HVDC-connected offshore wind farm[J]. IEEE Transactions on Sustainable Energy, 2010, 1(1): 30-37. [9] MITRA P, ZHANG L D, HARNEFORS L. Offshore wind integration to a weak grid by VSC-HVDC links using power-synchronization control: a case study[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 453-461. [10] CAI L, KARAAGAC U, MAHSEREDJIAN J. Simulation of startup sequence of an offshore wind farm with MMC-HVDC grid connection[J]. IEEE Transactions on Power Delivery, 2017, 32(2): 638-646. [11] FUNAKI T, MATSUURA K. Feasibility of the low frequency AC transmission[C]//2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077). 23-27 Jan. 2000, Singapore, Singapore. IEEE, 2000: 2693-2698. [12] QIN N, YOU S, XU Z, et al. Offshore wind farm connection with low frequency AC transmission technology[C]//2009 IEEE Power & Energy Society General Meeting. 26-30 July 2009, Calgary, AB, Canada. IEEE, 2009: 1-8. [13] WANG X F, CAO C J, ZHOU Z C. Experiment on fractional frequency transmission system[J]. IEEE Transactions on Power Systems, 2006, 21(1): 372-377. [14] CHEN H, JOHNSON M H, ALIPRANTIS D C. Low-frequency AC transmission for offshore wind power[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2236-2244. [15] RUDDY J, MEERE R, O'DONNELL T. Low Frequency AC transmission as an alternative to VSC-HVDC for grid interconnection of offshore wind[C]//2015 IEEE Eindhoven PowerTech. 29 June-2 July 2015, Eindhoven, Netherlands. IEEE, 2015: 1-6. [16] CHAITHANYA S, REDDY V N B, KIRANMAYI R. A narrative review on offshore wind power transmission using low frequency AC system[C]//2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon). 17-19 Aug. 2017, Bangalore, India. IEEE, 2017: 52-58. [17] RUDDY J, MEERE R, O’DONNELL T. Low Frequency AC transmission for offshore wind power: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 75-86. [18] LIU S Q, WANG X F, NING L H, et al. Integrating offshore wind power via fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1253-1261. [19] XIANG X, MERLIN M M C, GREEN T C. Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection[C]//12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China. Institution of Engineering and Technology, 2016: 1-6. [20] FOSTER S, XU L, FOX B. Control of an LCC HVDC system for connecting large offshore wind farms with special consideration of grid fault[C]//2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century. 20-24 July 2008, Pittsburgh, PA, USA. IEEE, 2008: 1-8. [21] 徐政. 高比例非同步机电源电网面临的三大技术挑战[J]. 南方电网技术, 2020, 14(2): 1-9 XU Zheng. Three technical challenges faced by power grids with high proportion of non-synchronous machine sources[J]. Southern Power System Technology, 2020, 14(2): 1-9 [22] HERRERA D, GALVáN E, CARRASCO J M. Method for controlling voltage and frequency of the local offshore grid responsible for connecting large offshore commercial wind turbines with the rectifier diode-based HVDC-link applied to an external controller[J]. IET Electric Power Applications, 2017, 11(9): 1509-1516. [23] NERIS A S, VOVOS N A, GIANNAKOPOULOS G B. A variable speed wind energy conversion scheme for connection to weak AC systems[J]. IEEE Transactions on Energy Conversion, 1999, 14(1): 122-127. [24] 于洋, 徐政, 徐谦, 等. 永磁直驱式风机采用混合直流并网的控制策略[J]. 中国电机工程学报, 2016, 36(11): 2863-2870 YU Yang, XU Zheng, XU Qian, et al. A control strategy for integration of permanent magnet direct-driven wind turbines through a hybrid HVDC system[J]. Proceedings of the CSEE, 2016, 36(11): 2863-2870 [25] 周长春, 徐政. 直流输电准稳态模型有效性的仿真验证[J]. 中国电机工程学报, 2003, 23(12): 33-36 ZHOU Changchun, XU Zheng. Simulation validity test of the hvdc quasi-steady-state model[J]. Proceedings of the CSEE, 2003, 23(12): 33-36 [26] YU L J, LI R, XU L. Distributed PLL-based control of offshore wind turbines connected with diode-rectifier-based HVDC systems[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1328-1336. [27] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749. [28] CHUNG S K. A phase tracking system for three phase utility interface inverters[J]. IEEE Transactions on Power Electronics, 2000, 15(3): 431-438. [29] DONG D, WEN B, MATTAVELLI P, et al. Grid-synchronization modeling and its stability analysis for multi-paralleled three-phase inverter systems[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 17-21 March 2013, Long Beach, CA, USA. IEEE, 2013: 439-446. [30] BURGOS R, BOROYEVICH D, WANG F, et al. On the Ac stability of high power factor three-phase rectifiers[C]//2010 IEEE Energy Conversion Congress and Exposition. 12-16 Sept. 2010, Atlanta, GA, USA. IEEE, 2010: 2047-2054. [31] RADWAN A A A, MOHAMED Y A R I. Analysis and active-impedance-based stabilization of voltage-source-rectifier loads in grid-connected and isolated microgrid applications[J]. IEEE Transactions on Sustainable Energy, 2013, 4(3): 563-576. [32] WEN B, BOROYEVICH D, BURGOS R, et al. Analysis of D-Q small-signal impedance of grid-tied inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 675-687. [33] WEN B, DONG D, BOROYEVICH D, et al. Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 26-38. [34] YE H, LIU Y, QI Z P, et al. A low-order AC-frequency and DC-voltage response model of HVDC grid connected with wind farms[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). 25-28 Oct. 2016, Xi'an, China. IEEE, 2016: 681-686.6. [35] G?KSU ?, TEODORESCU R, BAK C L, et al. Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1683-1691. [36] GIERSCHNER M, KNAAK H J, ECKEL H G. Fixed-reference-frame-control: a novel robust control concept for grid side inverters in HVDC connected weak offshore grids[C]//2014 16th European Conference on Power Electronics and Applications. 26-28 Aug. 2014, Lappeenranta, Finland. IEEE, 2014: 1-7. [37] PRIGNITZ C, ECKEL H G, ACHENBACH S, et al. FixReF: a control strategy for offshore wind farms with different wind turbine types and diode rectifier HVDC transmission[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). 27-30 June 2016, Vancouver, BC, Canada. IEEE, 2016: 1-7. [38] SHIN H, JUNG H S, SUL S K. Low Voltage Ride Through(LVRT) control strategy of grid-connected variable speed Wind Turbine Generator System[C]//8th International Conference on Power Electronics - ECCE Asia. 30 May-3 June 2011, Jeju, South Korea. IEEE, 2011: 96-101. [39] 郭贤珊, 周杨, 梅念, 等. 张北柔直电网的构建与特性分析[J]. 电网技术, 2018, 42(11): 3698-3707 GUO Xianshan, ZHOU Yang, MEI Nian, et al. Construction and characteristic analysis of Zhangbei flexible DC grid[J]. Power System Technology, 2018, 42(11): 3698-3707
|