中国电力 ›› 2021, Vol. 54 ›› Issue (3): 125-131.DOI: 10.11930/j.issn.1004-9649.202005106

• 电网 • 上一篇    下一篇

架空输电线舞动方程建模及主共振分析

闵光云1, 刘小会1,2, 孙测世2, 蔡萌琦3   

  1. 1. 重庆交通大学 土木工程学院,重庆 400074;
    2. 重庆交通大学 省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074;
    3. 成都大学 建筑与土木工程学院,四川 成都 610106
  • 收稿日期:2020-05-14 修回日期:2020-08-27 出版日期:2021-03-05 发布日期:2021-03-17
  • 作者简介:闵光云(1995-),男,硕士研究生,从事输电线结构动力学分析研究,E-mail:guangyunmin@163.com;刘小会(1981-),男,通信作者,博士,副教授,从事输电线结构动力学分析研究,E-mail:cqdxlxh@126.com
  • 基金资助:
    国家自然科学基金资助项目(连续档覆冰导线非线性舞动特征研究,51308570;特高压输电线路次档距振荡机理及其防振研究,51507106)

Galloping Equation and Primary Resonance Investigation of Overhead Transmission Lines

MIN Guangyun1, LIU Xiaohui1,2, SUN Ceshi2, CAI Mengqi3   

  1. 1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
    2. State Key Laboratory of Bridge and Tunnel Engineering in Mountain Areas, Chongqing Jiaotong University, Chongqing 400074, China;
    3. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
  • Received:2020-05-14 Revised:2020-08-27 Online:2021-03-05 Published:2021-03-17
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (Nonlinear Galloping Characteristics of Iced Conductor of Continuous Spans, No.51308570; Investigation on Mechanism of Sub-span Oscillation and Anti-vibration of UHV Transmission Lines, No.51507106)

摘要: 架空输电线舞动是造成线路损坏的主要原因之一,如何准确地描述输电线的舞动是一个值得关注的问题。首先通过哈密顿变分准则推导了输电线的偏微分舞动方程,然后将该方程无量纲化,计算了输电线面内对称模态以及反对称模态下的模态函数和线性频率,利用伽辽金法转化该偏微分方程为常微分方程,最后通过多尺度法分析Irvine参数对幅―频响应曲线的影响。通过分析幅―频响应曲线得知:Irvine参数越大非线性的影响越剧烈,跳跃现象越显著。当输电线发生主共振时,舞动的幅值主要由1阶模态函数决定,高阶模态函数引起的幅值远小于1阶模态函数引起的幅值。

关键词: 输电线, 主共振, 张力, 幅频响应, 多尺度法

Abstract: The galloping of overhead transmission lines is one of the main causes for line damages. How to accurately describe the galloping of transmission lines is a worthy topic. Firstly, a partial differential equation of a transmission line is derived with Hamiltonian variational principle. And then the equation is nondimensionalized, and the modal function and linear frequencies of the transmission line are calculated under in-plane symmetrical mode and anti-symmetric mode. The partial differential equation is transformed into ordinary differential equation with Galerkin method. Finally, the influence of Irvine parameters on amplitude-frequency response is analyzed with the method of multiple scales. From the curves of the amplitude-frequency response, it is found that the larger the Irvine parameters are, the stronger the nonlinear effects are and the more remarkable the jump phenomenon is. When the primary resonance occurs, the amplitude of galloping is mainly determined by the first-order modal function, and the amplitude caused by the higher-order modal function is much smaller than that caused by the first-order modal function.

Key words: transmission line, primary resonance, tensile force, amplitude-frequency response, method of multiple scales