[1] IRVINE H M, CAUGHEY T K. The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society of London, 1974, 341(12): 299-315. [2] DEN HARTOG J P. Transmission line vibration due to sleet[J]. Electrical Engineering, 1932, 51(6): 413. [3] NIGOL O, CLARKE G J. Conductor galloping and its control based on torsional mechanism[J]. Ontario Hydro Research Quarterly, 1974, 26(2): 31-41. [4] YU P, POPPLEWELL N, SHAH A H. Instability trends of inertially coupled galloping: part I: initiation[J]. Journal of Sound and Vibration, 1995, 183(4): 663-678. [5] 蔡延湘. 输电线舞动新机理研究[J]. 中国电力, 1998, 31(10): 62-66 CAI Yanxiang. A new mechanism of transmission line galloping[J]. Electric Power, 1998, 31(10): 62-66 [6] 李万平, 黄河, 何锃. 特大覆冰导线气动力特性测试[J]. 华中科技大学学报(自然科学版), 2001, 29(8): 84-86 LI Wanping, HUANG He, HE Zeng. Aerodynamic characteristics of heavily iced conductors[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2001, 29(8): 84-86 [7] 楼文娟, 林巍, 黄铭枫, 等. 不同厚度新月形覆冰对导线气动力特性的影响[J]. 空气动力学学报, 2013, 31(5): 616-622 LOU Wenjuan, LIN Wei, HUANG Mingfeng, et al. The impact of ice thickness on the aerodynamic characteristics of crescent shape iced conductors[J]. Acta Aerodynamica Sinica, 2013, 31(5): 616-622 [8] 闵光云, 刘小会, 严波, 等. 覆冰四分裂导线风洞试验与稳定性研究[J]. 力学与实践, 2020, 42(4): 447-454 MIN Guangyun, LIU Xiaohui, YAN Bo, et al. Wind tunnel test and stability study of iced quad bundle conductor[J]. Mechanics in Engineering, 2020, 42(4): 447-454 [9] 朱宽军, 刘超群, 任西春. 架空输电线路舞动时导线动态张力分析[J]. 中国电力, 2005, 38(10): 40-44 ZHU Kuanjun, LIU Chaoqun, REN Xichun. Analysis on dynamic tension of conductor under transmission line galloping[J]. Electric Power, 2005, 38(10): 40-44 [10] 王少华, 蒋兴良, 孙才新. 覆冰导线舞动特性及其引起的导线动态张力[J]. 电工技术学报, 2010, 25(1): 159-166 WANG Shaohua, JIANG Xingliang, SUN Caixin. Characteristics of icing conductor galloping and induced dynamic tensile force of the conductor[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 159-166 [11] 周贺, 黄健, 牛林华. ±800 kV线路中导线耐张串荷载对弧垂、张力的影响[J]. 中国电力, 2018, 51(3): 49-53, 61 ZHOU He, HUANG Jian, NIU Linhua. Influence of wire tension insulator string's load to conductor sag and tension in ±800 kV transmission line[J]. Electric Power, 2018, 51(3): 49-53, 61 [12] 黄新波, 徐冠华, 肖渊, 等. 塔线体系脱冰不平衡张力影响因素分析[J]. 中国电力, 2017, 50(11): 96-102 HUANG Xinbo, XU Guanhua, XIAO Yuan, et al. Analysis on influence factors of ice-shedding unbalanced tension of transmission tower-line system[J]. Electric Power, 2017, 50(11): 96-102 [13] LIU X H, LIU L, CAI M Q, et al. Free vibration of transmission lines with multiple insulator strings using refined models[J]. Applied Mathematical Modelling, 2019, 67: 252-282. [14] 杨风利, 李正, 张大长, 等. 输电铁塔双螺母防松螺栓横向振动试验研究[J]. 振动与冲击, 2018, 37(10): 164-171 YANG Fengli, LI Zheng, ZHANG Dachang, et al. Experimental study on the transversal vibration of double-nut bolted joints of transmission towers[J]. Journal of Vibration and Shock, 2018, 37(10): 164-171 [15] 汪晶毅, 潘春平, 朱映洁. 国内外架空输电线路档中线间距设计的对比研究[J]. 中国电力, 2017, 50(11): 90-95 WANG Jingyi, PAN Chunping, ZHU Yingjie. Comparative research on mid span clearances of overhead transmission lines design between domestic and foreign standards[J]. Electric Power, 2017, 50(11): 90-95 [16] 吴庆雄, 李浏, 陈宝春. 考虑弯曲刚度的拉索面内固有振动的理论计算公式[J]. 工程力学, 2010, 27(11): 9-15, 27 WU Qingxiong, LI Liu, CHEN Baochun. Theoretical equations of in-plane natural vibration for cables considering bending stiffness[J]. Engineering Mechanics, 2010, 27(11): 9-15, 27 [17] ZHAO Y B, PENG J, ZHAO Y Y, et al. Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonances of suspended cables[J]. Nonlinear Dynamics, 2017, 89(4): 2815-2827. [18] LEE C, PERKINS N C. Three-dimensional oscillations of suspended cables involving simultaneous internal resonances[C]//Advances in Nonlinear Dynamics: Methods and Applications. Dordrecht: Springer Netherlands, 1995: 45-63. [19] 闵光云, 刘小会, 孙测世, 等. 动张力简化方法对输电线舞动的影响研究[J]. 应用力学学报, 2020, 37(4): 1717-1723, 1871 MIN Guangyun, LIU Xiaohui, SUN Ceshi, et al. Study on the influence of simplification method of dynamic tension on the galloping of transmission line[J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1717-1723, 1871 [20] PERKINS N C. Modal interactions in the non-linear response of elastic cables under parametric/external excitation[J]. International Journal of Non-Linear Mechanics, 1992, 27(2): 233-250. [21] SUN C S, ZHAO Y B, PENG J, et al. Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation[J]. Engineering Structures, 2018(10): 938-955. [22] 刘小会, 闵光云, 严 波, 等. 不同自由度下覆冰四分裂导线舞动特征分析[J]. 力学季刊, 2020, 41(2): 370-383 LIU Xiaohui, MIN Guangyun, YAN Bo, et al. Analysis of galloping characteristics of iced quad bundle conductor with different degrees of freedom[J]. Chinese Quarterly of Mechanics, 2020, 41(2): 370-383 [23] 赵跃宇, 王连华, 刘伟长, 等. 悬索非线性动力学中的直接法与离散法[J]. 力学学报, 2005, 37(3): 329-338 ZHAO Yueyu, WANG Lianhua, LIU Weichang, et al. Direct treatment and discretizations of non-linear dynamics of suspended cable[J]. Acta Mechanica Sinica, 2005, 37(3): 329-338 [24] 李隆基, 郗晓光, 李志坚, 等. 微地形环境下输电线路微气象分析与预测技术[J]. 中国电力, 2020, 53(3): 76-83 LI Longji, XI Xiaoguang, LI Zhijian, et al. Analysis and prediction of micro-meteorological parameters for power transmission lines in micro-terrain environment[J]. Electric Power, 2020, 53(3): 76-83 [25] 高峰,殷铭,祁志远,等. 高铁穿越风引起的输电线路振颤研究[J]. 南方电网技术, 2020, 14(4): 24-30 GAO Feng, YIN Ming, QI Zhiyuan, et al. Study on wind-induced vibration of transmission line caused by high-speed train crossing[J]. Southern Power System Technology, 2020, 14(4): 24-30 [26] 吴新桥,张志强,章东鸿,等. 沿海老旧输电线路防风能力评价方法[J]. 南方电网技术, 2020, 14(4): 39-44 WU Xinqiao, ZHANG Zhiqiang, ZHANG Donghong, et al. Evaluation method of anti-wind capacity of coastal old transmission lines[J]. Southern Power System Technology, 2020, 14(4): 39-44 [27] 袁敬中,潘国兵,谢景海,等. 基于多模空间距离权重融合的高压架空输电线舞动监测模块的设计[J]. 电力系统保护与控制, 2020, 48(24): 173-179 YUAN Jingzhong, PAN Guobing, XIE Jinghai, et al. Design of a galvanic monitoring module for high-voltage overhead transmission lines based on the fusion of multi-mode spatial distance weights[J]. Power System Protection and Control, 2020, 48(24): 173-179 [28] DESAI Y M, YU P, POPPLEWELL N, et al. Finite element modelling of transmission line galloping[J]. Computers & Structures, 1995, 57(3): 407-420.
|