[1] 何金良, 曾嵘. 电力系统接地技术[M]. 北京: 科学出版社, 2007. [2] OLSEN R G, GRCEV L. Analysis of high-frequency grounds: comparison of theory and experiment[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 4889-4899. [3] YUTTHAGOWITH P, AMETANI A, NAGAOKA N, et al. Application of the partial element equivalent circuit method to analysis of transient potential rises in grounding systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 726-736. [4] NICHOLS N, SHIPP D D. Designing to avoid hazardous transferred earth potentials[J]. IEEE Transactions on Industry Applications, 1982, IA-18(4): 340-347. [5] DICK W K, WINTER D F. Computation, measurement and mitigation of neutral-to-earth potentials on electrical distribution systems[J]. IEEE Transactions on Power Delivery, 1987, 2(2): 564-571. [6] GRCEV L, DAWALIBI F. An electromagnetic model for transients in grounding systems[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1773-1781. [7] 张波,张勇,刘政强,等. 国网山东电力北斗地基增强系统建设方案及应用[J]. 电力系统保护与控制, 2020, 48(3): 70-76 ZHANG Bo, ZHANG Yong, LIU Zhengqiang, et al. Construction scheme and application of BDS ground-based augmentation system of State Grid Shandong Electric Power[J]. Power System Protection and Control, 2020, 48(3): 70-76 [8] 李志军, 陈维江, 姜文东, 等. 110 kV双回线路格构式复合材料杆塔雷电防护研究[J]. 高电压技术, 2015, 41(1): 76-83 LI Zhijun, CHEN Weijiang, JIANG Wendong, et al. Research on lightning protection of lattice composite material tower of 110 kV double circuit line[J]. High Voltage Engineering, 2015, 41(1): 76-83 [9] SUN Z, WANG J G, QIE X S, et al. Observation of lightning current and ground potential rise in artificially trigged lightning experiment[C]//2008 International Conference on High Voltage Engineering and Application. Chongqing, China. IEEE, 2008: 277-280. [10] OGUCHI S, ISHII T, OKABE S, et al. Observational and experimental study of the lightning stroke attraction effect with ground wire system constructions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(1): 363-370. [11] ZENG R, GONG X H, HE J L, et al. Lightning impulse performances of grounding grids for substations considering soil ionization[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 667-675. [12] 黄欢 雷加智 曾华荣,等. 极端外部环境下输电线路的综合风险评估方法[J]. 电力科学与技术学报, 2019, 34(2): 119-127 HUANG Huan, LEI Jiazhi, ZENG Huarong, et al. Integrated risk assessment system of transmission line under extreme external environment[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 119-127 [13] 李经野,宋坤宇. 基于雷击故障辨识的110 kV输电线路故障巡线策略[J]. 电力科学与技术学报, 2019, 34(2): 175-181 LI Jingye, SONG Kunyu. Fault patrol strategy for 110 kV transmission line based on the lightning fault identification[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 175-181 [14] THAPAR B, PURI K K. Mesh potentials in high-voltage grounding grids[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(2): 249-254. [15] 张血琴, 陈奎, 李瑞芳, 等. 高架桥段地铁接触网的改进防雷措施[J]. 高电压技术, 2016, 42(5): 1527-1534 ZHANG Xueqin, CHEN Kui, LI Ruifang, et al. Improvement in lightning protection scheme of subway catenary with viaduct bridge[J]. High Voltage Engineering, 2016, 42(5): 1527-1534 [16] RUBINSTEIN M, UMAN M A, MEDELIUS P J, et al. Measurements of the voltage induced on an overhead power line 20 m from triggered lightning[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(2): 134-140. [17] 谢施君, 曾嵘, 李建明, 等. 变电站雷电侵入过电压波形特征及其影响因素的仿真[J]. 高电压技术, 2016, 42(5): 1556-1564 XIE Shijun, ZENG Rong, LI Jianming, et al. Simulation on the characteristics and its influence factors of lightning intruding wave in substation[J]. High Voltage Engineering, 2016, 42(5): 1556-1564 [18] ALIPIO R, VISACRO S. Frequency dependence of soil parameters: effect on the lightning response of grounding electrodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(1): 132-139. [19] ZENG R, KANG P, HE J L, et al. Lightning transient performance analysis of substation based on complete transmission line model of power network and grounding systems[J]. IEEE Transactions on Magnetics, 2006, 42(4): 875-878. [20] 刘浔, 陶礼兵, 蒋圣超, 等. 杆塔雷电冲击接地特性的现场试验与仿真研究[J]. 华中科技大学学报(自然科学版), 2014, 42(3): 68-72 LIU Xun, TAO Libing, JIANG Shengchao, et al. Field tests and simulation study on lightning impulse characteristic of transmission line tower grounding[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(3): 68-72 [21] 孙振, 王建国, 刘洋, 等. 一次人工引雷雷电流和地电位升高监测[J]. 现代电力, 2008, 25(5): 25-29 SUN Zhen, WANG Jianguo, LIU Yang, et al. Monitoring of lightning current and grounding potential rise in artificially trigged lightning experiment[J]. Modern Electric Power, 2008, 25(5): 25-29 [22] 颜旭, 张义军, 陈绍东, 等. 1次人工触发闪电引起的临近地网电位升高及其特征分析[J]. 高电压技术, 2017, 43(5): 1642-1649 YAN Xu, ZHANG Yijun, CHEN Shaodong, et al. Ground potential rise between the adjacent ground networks based on one artificially triggered lightning[J]. High Voltage Engineering, 2017, 43(5): 1642-1649 [23] 孟青. 广东闪电综合观测试验(GCOELD)[R]. CAMS 年度报告, 2009: 23–24. [24] 张义军, 吕伟涛, 陈绍东, 等. 广东野外雷电综合观测试验十年进展[J]. 气象学报, 2016, 74(5): 655-671 ZHANG Yijun, LV Weitao, CHEN Shaodong, et al. A review of lightning observation experiments during the last ten years in Guangdong[J]. Acta Meteorologica Sinica, 2016, 74(5): 655-671 [25] CHEN S D, ZHANG Y J, ZHOU M, et al. Influence on low-voltage surge protective devices of overhead distribution lines due to nearby return strokes[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1099-1106. [26] 曹雪芬, 陈绍东, 颜旭, 等. 一次触发闪电引起的SPD接地线电流特征分析[J]. 中国电力, 2016, 49(5): 49-52, 140 CAO Xuefen, CHEN Shaodong, YAN Xu, et al. Characteristics analysis on SPD grounding current for overhead distribution line based on artificial-triggered lightning[J]. Electric Power, 2016, 49(5): 49-52, 140
|