[1] MA L, LIU N, ZHANG J H, et al. Real-time rolling horizon energy management for the energy-hub-coordinated prosumer community from a cooperative perspective[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1227-1242. [2] WANG Q, HODGE B M. Enhancing power system operational flexibility with flexible ramping products: a review[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1652-1664. [3] 白帆, 陈红坤, 陈磊, 等. 基于确定型评价指标的电力系统调度灵活性研究[J]. 电力系统保护与控制, 2020, 48(10): 52-60 BAI Fan, CHEN Hongkun, CHEN Lei, et al. Research on dispatching flexibility of power system based on deterministic evaluation index[J]. Power System Protection and Control, 2020, 48(10): 52-60 [4] 李则衡, 陈磊, 路晓敏, 等. 基于系统灵活性的可再生能源接纳评估[J]. 电网技术, 2017, 41(7): 2187-2194 LI Zeheng, CHEN Lei, LU Xiaomin, et al. Assessment of renewable energy accommodation based on system flexibility analysis[J]. Power System Technology, 2017, 41(7): 2187-2194 [5] 国家发改委. 国家发展改革委关于完善光伏发电上网电价机制有关问题的通知[EB/OL]. (2019-04-30) [2020-01-06]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201904/t20190430_962433.html. [6] 国家发改委, 国家能源局. 电力发展“十三五”规划(2016-2020)[EB/OL]. (2017-06-05) [2020-06-19]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/W020191104624253414400.pdf. [7] 冯小峰, 谢添阔, 高赐威, 等. 电力现货市场下计及售电商长期收益的需求侧响应[J]. 电网技术, 2019, 43(8): 2761-2769 FENG Xiaofeng, XIE Tiankuo, GAO Ciwei, et al. A demand side response strategy considering long-term revenue of electricity retailer in electricity spot market[J]. Power System Technology, 2019, 43(8): 2761-2769 [8] VU D H, MUTTAQI K M, AGALGAONKAR A P, et al. Customer reward-based demand response program to improve demand elasticity and minimise financial risk during price spikes[J]. IET Generation, Transmission & Distribution, 2018, 12(15): 3764-3771. [9] YANG H M, ZHANG J, QIU J, et al. A practical pricing approach to smart grid demand response based on load classification[J]. IEEE Transactions on Smart Grid, 2018, 9(1): 179-190. [10] 曹昉, 李欣宁, 刘思佳, 等. 基于消费者参考价格决策及用户黏性的售电套餐优化[J]. 电力系统自动化, 2018, 42(14): 67-74 CAO Fang, LI Xinning, LIU Sijia, et al. Optimization of sales package for end-users based on user stickiness and reference pricing decision of consumers[J]. Automation of Electric Power Systems, 2018, 42(14): 67-74 [11] 王克道, 陈启鑫, 郭鸿业, 等. 面向可交易能源的储能容量合约机制设计与交易策略[J]. 电力系统自动化, 2018, 42(14): 54-60, 90 WANG Kedao, CHEN Qixin, GUO Hongye, et al. Mechanism design and trading strategy for capacity contract of energy storage towards transactive energy[J]. Automation of Electric Power Systems, 2018, 42(14): 54-60, 90 [12] 胡鹏, 艾欣, 张朔, 等. 基于需求响应的分时电价主从博弈建模与仿真研究[J]. 电网技术, 2020, 44(2): 585-592 HU Peng, AI Xin, ZHANG Shuo, et al. Modelling and simulation study of TOU stackelberg game based on demand response[J]. Power System Technology, 2020, 44(2): 585-592 [13] 郭昆健, 高赐威, 林国营, 等. 现货市场环境下售电商激励型需求响应优化策略[J/OL]. 电力系统自动化: 1-10[2020-06-17]. http://kns.cnki.net/kcms/detail/32.1180.TP.20200526.1154.004.html. GUO Kunjian, GAO Ciwei, LIN Guogong, et al. Optimization strategy of incentive-based demand response for electricity retailer in spot market environment [J/OL]. Automation of Electric Power Systems: 1-10 [2020-06-17]http://kns.cnki.net/kcms/detail/32.1180.TP.20200526.1154.004.html. [14] 陈修鹏, 李庚银, 夏勇. 基于主从博弈的新型城镇配电系统产消者竞价策略[J]. 电力系统自动化, 2019, 43(14): 97-110 CHEN Xiupeng, LI Gengyin, XIA Yong. Stackelberg game based bidding strategy for prosumers in new urban distribution system[J]. Automation of Electric Power Systems, 2019, 43(14): 97-110 [15] 王燕舞, 崔世常, 肖江文, 等. 社区产消者能量分享研究综述[J/OL]. 控制与决策: 1-14[2020-06-17]. https://kns-cnki-net.webvpn.ncepu.edu.cn/kcms/detail/21.1124.tp.20200525.1808.002.html. WANG Yanwu, CUI Shichang, XIAO Jiangwen, et al. A Review on Energy Sharing for Community Energy Prosumers [J/OL]. Control and decision: 1-14 [2020-06-17] https://kns-cnki-net.webvpn.ncepu.edu.cn/kcms/detail/21.1124.tp.20200525.1808.002.html. [16] LI P, WANG H, ZHANG B S. A distributed online pricing strategy for demand response programs[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 350-360. [17] 代业明, 高红伟, 高岩, 等. 具有电力需求预测更新的智能电网实时定价机制[J]. 电力系统自动化, 2018, 42(12): 58-63 DAI Yeming, GAO Hongwei, GAO Yan, et al. Real-time pricing mechanism in smart grid with forecasting update of power demand[J]. Automation of Electric Power Systems, 2018, 42(12): 58-63 [18] 张天伟, 王蓓蓓, 贲树俊, 等. 兼顾降负荷和反弹抑制的负荷聚合商下空调集群调控策略[J]. 电力系统及其自动化学报, 2019, 31(3): 50-60 ZHANG Tianwei, WANG Beibei, BEN Shujun, et al. Control strategies for air-conditioning group under load aggregator considering load reduction and rebound suppression[J]. Proceedings of the CSU-EPSA, 2019, 31(3): 50-60 [19] 郑爱霞, 吉用丽, 辛建波, 等. 计及反弹效应的温控负荷有序削峰策略[J]. 南方电网技术, 2017, 11(11): 53-60 ZHENG Aixia, JI Yongli, XIN Jianbo, et al. Orderly peak load shaving strategy of thermostatic controlled loads considering payback effect[J]. Southern Power System Technology, 2017, 11(11): 53-60 [20] 李中伟, 白子扬, 周伟健, 等. 电热水器负荷参与电力系统调频响应过程分析[J]. 电力科学与技术学报, 2019, 34(3): 183-189 LI Zhongwei, BAI Ziyang, ZHOU Weijian, et al. Analysis process of electric water heater load involved in power system frequency modulation response[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 183-189 [21] CUI W Q, DING Y, HUI H X, et al. Evaluation and sequential dispatch of operating reserve provided by air conditioners considering lead-lag rebound effect[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6935-6950. [22] GHASEMKHANI A, YANG L, ZHANG J S. Learning-based demand response for privacy-preserving users[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 4988-4998. [23] 陆玉玉, 王波, 王晓飞, 等. 考虑公平性的智能电网实时电价收益均衡模型[J]. 电力系统保护与控制, 2019, 47(21): 41-46 LU Yuyu, WANG Bo, WANG Xiaofei, et al. Real-time pricing revenue equilibrium model considering fairness in smart grid[J]. Power System Protection and Control, 2019, 47(21): 41-46 [24] 国家发展改革委, 国家能源局. 国家发展改革委 国家能源局关于印发电力体制改革配套文件的通知[A/OL]. (2015-11.26) [2020-03-01]. http://www.nea.gov.cn/2015-11/30/c_134867851.htm. [25] 刘晓峰, 高丙团, 李扬. 博弈论在电力需求侧的应用研究综述[J]. 电网技术, 2018, 42(8): 2704-2711 LIU Xiaofeng, GAO Bingtuan, LI Yang. Review on application of game theory in power demand side[J]. Power System Technology, 2018, 42(8): 2704-2711 [26] PJM Interconnection. Step-by-step REST examples for CBL calculations[EB/OL]. (2016-12-01)[2020-07-21]. https://www.pjm.com/~/media/etools/dr-hub/cbl-calculations-step-by-step.ashx. [27] WANG F, LI K P, LIU C, et al. Synchronous pattern matching principle-based residential demand response baseline estimation: mechanism analysis and approach description[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6972-6985. [28] LU Q Y, CAi Q N, LIU S J, et al. Short-term load forecasting based on load decomposition and numerical weather forecast[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). Beijing, China: IEEE, 2017: 1-5. [29] KONDA S R, PANWAR L K, PANIGRAHI B K, et al. Investigating the impact of load profile attributes on demand response exchange[J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1382-1391. [30] 孟子超, 杜文娟, 王海风. 基于迁移学习深度卷积神经网络的配电网故障区域定位[J]. 南方电网技术, 2019, 12(7): 25-33 MANG Zichao, DU Wenjuan, WANG Haifeng. Distribution network fault area location based on deep convolution neural network with transfer learning[J]. Southern Power System Technology, 2019, 12(7): 25-33 [31] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958.
|