[1] 闫豪楠, 赵文会, 刘玮. 考虑新能源参与的售电公司风险模型管理模型[J]. 中国电机工程学报, 2018, 38(23): 6747-6954 YAN Haonan, ZHAO Wenhui, LIU Wei. A risk management model of power retailers considering the participation of new energy[J]. Proceedings of the CSEE, 2018, 38(23): 6747-6954 [2] 肖艳炜, 高怡静, 李继红, 等. 英美电力市场用户及调度成本覆盖的思考与启示[J]. 电力需求侧管理, 2018, 20(6): 61-64 XIAO Yanwei, GAO Yijing, LI Jihong, et al. Reflection and enlightenment on customer and dispatch cost coverage of British and American electricity markets[J]. Power Demand Side Management, 2018, 20(6): 61-64 [3] CHEN F, HUANG K, HOU Y, et al. Long-term cross-border electricity trading model under the background of Global Energy Interconnection. Global Energy Interconnection, 2019,2(2): 122-129. [4] HUANG J, LIN C, ZHOU H, XU Z, et al. Research on key technologies of deduction of multinational power trading in the context of Global Energy Interconnection. Global Energy Interconnection,2019, 2(6): 561-567. [5] 朱继忠. 美国电力市场的发展和实现方法分析[J]. 南方电网技术, 2016, 10(5): 22-28 ZHU Jizhong. Development and implementation method of electricity market in the USA[J]. Southern Power System Technology, 2016, 10(5): 22-28 [6] HE Y X, JIAO J, CHEN Q, et al. Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin, Energy, 2017, 133: 9-22. [7] 苏振宇, 龙勇, 赵丽艳. 基于regARIMA模型的月度负荷预测效果研究[J]. 中国电力, 2018, 51(5): 166-171 SU Zhenyu, LONG Yong, ZHAO Liyan. Study on the monthly power load forecasting performance based on regARIMA model[J]. Electric Power, 2018, 51(5): 166-171 [8] HONG T, WILSON J, XIE J. Long term probabilistic load forecasting and normalization with hourly information[J]. IEEE Transaction on Smart Grid, 2014, 5(1): 456-462. [9] SAHAY K B, and TRIPATHI M M, Day ahead hourly load forecast of PJM electricity market and ISO new England market by using artificial neural network[C]// ISGT. 2014, Washing tan: IEEE 2014, 1-5. [10] BALIYAN A, GAURAV K and MISHRA S K, A review of short term load forecasting using artificial neural network models[J]. Procedia Computer Science, 2015, 48: 121-125. [11] WANG X, LEE W J, HUANG H, et al, Factors that impact the accuracy of clustering-based load forecasting[J]. IEEE Transaction on Industry Applications, 2016, 52: 3625-3630. [12] GUPTA S, KAMBLI R, WAGHS. Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (4): 2478-2486. [13] MITCHELL G, BAHADOORSHNGH S, RAMSAMOOJ N, et al. A comparison of artificial neural networks and support vector machines for short-term load forecasting using various load types[C]. IEEE Manchester PowerTech, UK, 2017. [14] 赵芝璞, 高超, 沈艳霞, 等. 基于关联模糊神经网络和改进型蜂群算法的负荷预测方法[J]. 中国电力, 2018, 51(2): 51-60 ZHAO Zhipu, GAO Chao, SHEN Yanxia, et al. A method for load forecasting based on correlated fuzzy neural network and improved artificial bee colony algorithm[J]. Electric Power, 2018, 51(2): 51-60 [15] 赵慧材, 陈跃辉, 陈瑞先, 等. 结合模糊粗糙集和支持向量机的电力负荷短期预测方法[J]. 中国电力, 2015, 48(2): 45-48 ZHAO Huicai, CHEN Yuehui, CHEN Ruixian, et al. A short-term power load forecasting method based on fuzzy rough and support vector machine[J]. Electric Power, 2015, 48(2): 45-48 [16] 卢杏坚, 高小征. 基于深度学习的并行负荷预测方法[J]. 自动化与信息工程, 2017, 38(4): 26-30 LU Xingjian, GAO Xiaozheng. Parallel load forecasting method based on deep learning[J]. Automation & Information Engineering, 2017, 38(4): 26-30 [17] 姜曼, 刘定宜, 叶泽, 等. 考虑售电公司的跨省区电力交易的资源配置分析[J]. 电力科学与技术学报, 2018, 33(3): 120-127. JIANG Man, LIU Dingyi, YE Ze, et al. Resource allocation analysis of cross-provincial power trading with the participation of power selling company[J]. Journal of Electric Power Science and Technology, 2018, 33(3): 120-127. [18] XU F Y, CUN X, YAN M X, et al. Power market load forecasting on neural network with beneficial correlated regularization[J]. IEEE Transaction on Industrial Informatics, 2018, 14(11): 5050-5059. [19] NYISO, Load data [EB/OL]. http://www.nyiso.com/public/markets_operations/market_data/load_data/index.jsp. 2018-9-3. [20] NYISO, Pricing Data [EB/OL]. http://www.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp. 2018-9-3. [21] National Oceanic and Atmospheric Administration, Local Climatological Data [EB/OL]. https://www.ncdc.noaa.gov/cdo-web/datatools/lcd. 2018-9-3.
|